CD50 potentiometric output - Measurement range 0 up to 1250 mm

Specifications:

Measurement range 0 up to 1250 mm

 $1k\Omega$ Potentiometer (other values on demand) Output signal Resolution Quasi infinite (depends on the operating system)

Material Body and cover - Aluminium (RohS)

Measuring cable - Stainless steel

Cable diameter 0,51 mm

Multi-turn Hybrid potentiometer Detection element Connection Male connector M16 - DIN 3 pin Male connector M12 – 4 pin

PVC cable - 4 wires

Standard linearity +/- 0,25% f.s. – stroke ≤500mm

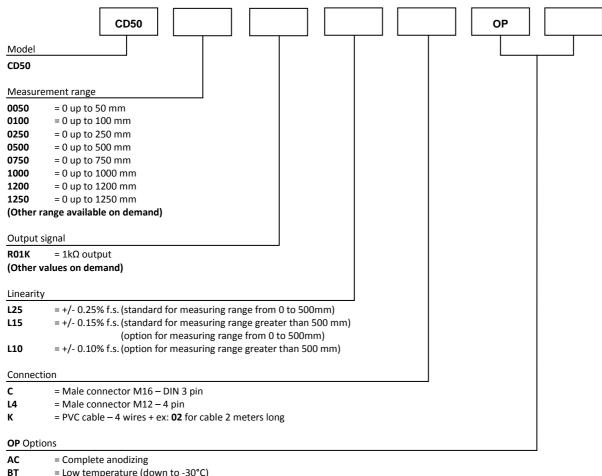
+/- 0,15% f.s. – stroke >500mm

+/- 0,10% f.s. - stroke >500mm (option)

Protection class IP54 (option IP67)

Max. Velocity 10 M/S

Max. Acceleration 40 M/S² (before cable deformation)


Weight ≈ 700 g Operating temperature -20° to +70°C Storage temperature -30° to +100°C

Cable forces:

Measurement range in mm	Min. pull-out force	Max. pull-out force
50	≈ 6,40 N	≈ 6,50 N
100	≈ 6,30 N	≈ 6,50 N
250	≈ 6,00 N	≈ 6,50 N
500	≈ 5,50 N	≈ 6,50 N
750	≈ 5,00 N	≈ 6,50 N
1000	≈ 4,50 N	≈ 6,50 N
1200	≈ 4,00 N	≈ 6,50 N
1250	≈ 4,00 N	≈ 6,50 N

Ordering reference:

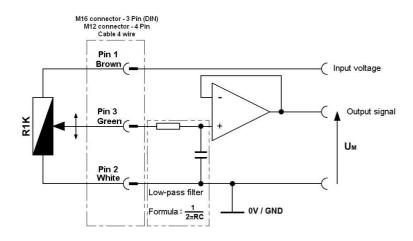
= Low temperature (down to -30°C)

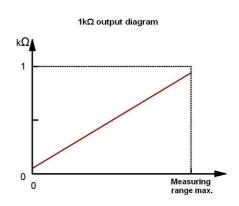
FM = Cable clip

EN = Measuring cable coated with polyamide

IP67 = Protection class IP67 Μ4 = M4 cable fixing RAC = Cable dust wiper = Water evacuation holes TEV

Reference example: CD50-0750-U010-L15-K02-OP-AC-EM

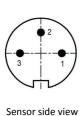


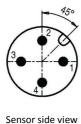

Electrical characteristics:

 $\underline{\textbf{Potentiometric version 1 K} \Omega:} \text{ (other values on demand)}$

Temperature drift+/-50 ppm/°C

Example of wiring diagram with input stage:

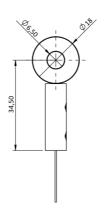




To ensure a good linearity, wire the potentiometer as a voltage divider and never as a rheostat. The input resistance of the operating system must be very high (greater than $10 M\Omega$)

Connection:

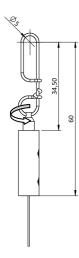
Male connector M16 3 pin (DIN)	Male connector M12 4 pin (DIN)	PVC cable 4 wire	R01K
1	1	Brown	Input voltage +
2	2	White	Input voltage GND
3	3	Green	Signal +
	dra		



Options:

Cable attachment with a lug:

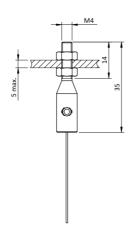
Standard


The attachment lug is fixed with a M6 screw or a clevis.

Cable attachment with a clip:

OP-EM

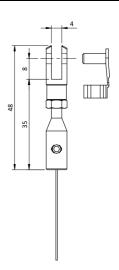
This fastening system allows a rotation about its axis.
The clip is fixed with a M4 screw or a clevis.


Cable attachment with a M4 threaded rod:

OP-M4

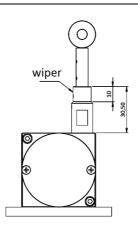
The rod attachment uses a threaded rod with 2 nuts (provided). The required thickness of the plate does not exceed 5 mm.

Caution


Never screw the threaded rod into a fixed nut, a twist of the measurement cable would damage it.

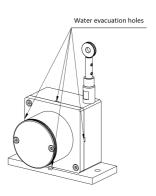
Cable attachment with a clevis:

OP-CP

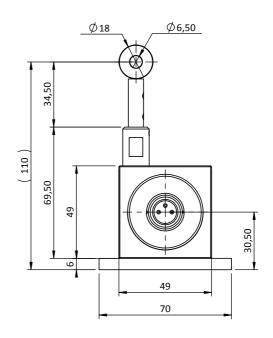

The attachment of the clevis is done using a pin (provided).

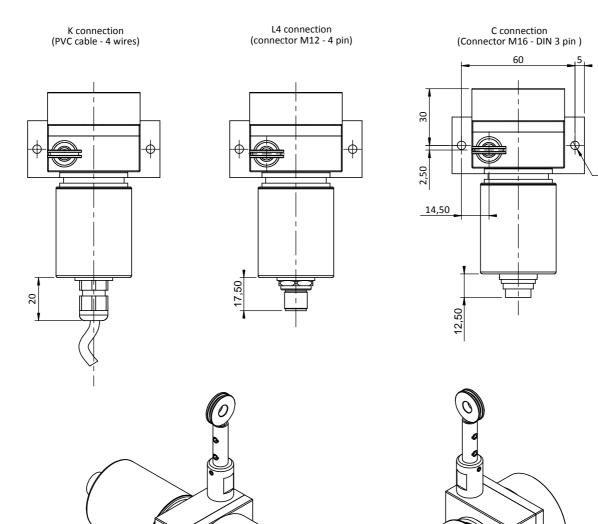
Cable dust wiper:

OP-RAC


The dust wiper cleans the cable in dusty or humid environments.

Water evacuation holes:


OP-TEV


The holes allow the natural flow of fluids out of the sensor in order to avoid their accumulation in the system.

2 x Ø4,50