DPSENC8- BK5(6)

INSTRUCTIONS OF OPERATION

AND
INSTALLATION

Via grandi 13-40050 Villanova di Castenaso - Bologna - Italia Tel: 0039-(0)51-781185 / 781158 Fax: 0039-(0)51-781273
www.creistt.com e-mail :creistt@tin.it

1. LAY-OUT of connections

WARNING !!!
CORRECTEARTH IS VITAL

2. Dimensions - Holes

3. DATA PROGRAMMING

Replace the new value to the old value. Be care that the two phases will not be overlapped.

4. INSIRUCTIONS

White date in memory :

The DPSENC 8 allows to modify the values of the phases and advances ON-UNE for all those adjustments that must be done on machine while it's running.

ATIENTION: the data are stored in memory only when the encoder isstopped. In case of intemupted feeding (24Vcc) while the enc oder is tuming, the value of the piec e-counter, of hour-counter and of the parameters changed ON-LINE (phasesoradvance), go back to the value stored before the last start.

4.1 Language selection

From the main display use the $\mathbf{\Delta}$ key to access the language selection menu. Type the number which correspond to the desired language:

1 - ITALIAN
2 - ENG USH

4.2 Advance function

Once the advances sets has been selected, the programmer will require an advances value in Milliseconds. This value can be found in practice or with a simple mathematic al formula (illustrated later on) but may not correspond to the true requirements. This for the reason that no variables are taken into consideration which distinguishes delays or mechanical differences between machines. A more practical way is by starting with a very low value and gradually increasing it until the correct value is found. It is preferable that the advanced value is found at the maximum speed for the machine. This assures that the value will work correctly even at the low speeds.

The mathematical formula is asfollows:
Known data : Encoder Rotation speed (Cycles/Min), antic ipation/Delay nec essary (Degrees)
Value to Find: Value in ms (millisec ondsto set on the programmer)
Cycles/ Min/60 = (Cycles/Sec)
1000/n=N (millisec onds/Revolution)
$\mathrm{N} / 360=\mathrm{Q}$ (milliseconds/ degree)
$\mathrm{Q} \times$ Degrees of Advances $=\mathrm{T}$ (time in milliseconds to set on the programmer)
Example:
Encoder shaft $=300$ Tums $/$ Min
AdvancesRequired $=30$ Degreesat max. speed
$300 / 60=5$ Cycles/Sec.
1000/5 $=200$ millisec onds/tum
200 / $360=0.55$ millisec onds per degree
$0.55 \times 30=16.6$ (antic ipation time to set on the programmer)

4.3 Revolution direction function

The DPSENC 8 accepts the encodersignals in both clockwise and antic lockwise directions. The keyboard can be used to set the rotation direction so the display will always show an incremental value.

4.5 Cams test function

It gives the possibility to test the cam outputs. This useful after machine installation or for diagnosing an eventual problem situation.

GENERAL INSIRUC TIONS OF INSTAШATION.

The laying of the cables must be done possibly keeping a part power cables from logicaland control cables so that a void possible coupling voltagesthat could disturb ordamage electronic components.
The GND is connected to earth. It's advisable to keep shielded GND and electronic circuits GND separate from that of power circ uits.
The resistance of the circuit of earth must be within the allowed limits (0,2 / 0.3 ohm)
The product DPSENC 8 is in conformity with the standard $89 / 336 / E E C$ 92/31/EEC $93 / 68 / E E C$ on electromagnetic compatibility foremissions EN 50081-2 and immunity EN 50082-2 .

