Electric Equipment General Catalog

Automatic Transfer Switch (ATS)

Contents

Low voltage	High voltage
automatic	automatic
transfer switch	transfer switch

viltzro Automatic Transfer Switches

As a leader of ATS industry in the country, VITZROTECH provides diversified types and high quality products.

Largest series in the country : A full series is provided from ultra-small type to high quality devices and high voltage vacuum transfer switch.
High quality : Our products are produced under ISO9000 certification, complying with UL, and exported to U.S.A.

General ATS				
		Breaking section is sealed and insulated with mold to improve safety and reliability		
Type		dard	Economy	
Model	WN	WS (New model)	WP	W
Rated voltage	AC600V	AC600V	AC600V	AC600V
Rated current	6300 ~ 3200A	$600 \sim 3200 \mathrm{~A}$	63~400A	63~400A
Pole	2,3,4	2,3,4	2,3,4	2,3,4
Connection type	Front / Back type			
Transfer sequence	$\begin{gathered} A \leftrightarrow B \\ A \leftrightarrow \text { Neutral(off) } \leftrightarrow B \end{gathered}$	$\begin{gathered} A \leftrightarrow B \\ A \leftrightarrow \text { Neutral(off) } \leftrightarrow B \end{gathered}$	$\begin{gathered} A \leftrightarrow B \\ A \rightarrow \text { Off(pause) } \rightarrow \mathrm{B} \\ \mathrm{~A} \leftarrow \text { Off(pause) } \leftarrow \mathrm{B} \\ \text { (Pause : 3~30s) } \end{gathered}$	$A \leftrightarrow B$
Features and application	- Stable current-carrying performa - Stable opening via breaking spring - Both power sources can be switche - In transferring the motor load with generating characteristic, check before transfer is available. Electric line where the load pow switched off - Hospital, broadcasting station, fir plant, etc.	ce via latch structure ed off via trip structure. high residual voltage and the stability and safety of circuit source must be completely ighting equipment,industrial	- Both power sources can be switched off temporarily via limit resistor and timer - In transferring the motor load with high residual voltage and generating characteristic (machines with fly wheel, mercury lamp, etc.), both power sources can be switched off until the extinction of residual voltage (Max. 30s) - Hospital, broadcasting station, life-rearing facilities, bank, hotel, industrial plant, etc., which requires stable power supply	- Load transfer accompanied by low residual voltage - Stable power supply through quick power transfer - Hospital, broadcasting station, firefighting equipment, etc.
Details	F-8	F-6	F-11	F-10

High voltage ATS (VTS)
High class ATS (CTTS, BIS)

Ultra-Small ATS

HS type ... 2P , 100A , 200A

Ultra-Small ATS

Features

- Power saving type

Instantaneous excitation with small operation current (1.6A for AC 220V operation)

Safe design

Dust-free structure by mold structure applied to breaking section ensures semi-permanent contact part.

- Two-coil type

Two-coil type simple operation

- Ultra-small size

Ultra-small size, which can be built in the portable generator or UPS.

- Low cost

Optimal for single phase load (non-inductive) under 200A.

- Applied standard

JEM1465 / UL1008

Standard ATS

WS Type ... 600A ~3000A

New model with improved insulation and safety Neutral point added

$$
A \leftrightarrow \text { Neutral(off) } \leftrightarrow B
$$

(1) Switching capacity : AC3 class: Closing $10 \times \mathrm{le}$, breaking $8 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.35$ DC1 class : Closing $1.1 \times \mathrm{le}$, breaking $1.1 \times \mathrm{le}, \mathrm{L} / \mathrm{R}=1 \mathrm{~ms}$
AC2 class : Closing $4 \times \mathrm{le}$, breaking $4 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.65$
(2) Trip : Opening of a circuit to a neutral position off from power A or power B.

Features

- Reliable insulation

The current breaking part is completely sealed in a mold structure to exclude the risk of electric shock by human body contact, or electric faults due to accumulated dusts or foreign matters on conducting parts during long-term use.

- Safe conducting performance

Safe conducting performance is maintained by constant contact pressure for each phase. Short-circuit overcurrent strength is high because it is protected by latch mechanism.

- High class design

This product has a one-phase structure insulated and separated by phase, so that three- or four-phase conducting parts can be assembled conforming to the capacity and number of phases according to the user's convenience.

- One-coil type

This is a compact type in which both normal side and standby side can be closed.

- Safe opening characteristic

Semi-permanent lifetime is ensured by employing a unique structure arc chute, with short arc breaking time and low wear of contact. The trip operation by breaking spring always realizes stable breaking characteristic, regardless of operating voltage.

- Neutral point type

Power source is transferred after the stability and safety of circuit are checked, and the neutral position ("off" status) is available via the trip structure.
That is, $A \rightarrow$ off $\rightarrow A / B \rightarrow$ off $\rightarrow B$ as well as $A \rightarrow$ off \rightarrow $\mathrm{B} / \mathrm{B} \rightarrow$ off $\rightarrow \mathrm{A}$, and instantaneous transfer are all available.

```
Neutral point added
A}\leftrightarrowNeutral(off) ↔
```


[^0](2) Trip : Opening of a circuit to a neutral position off from power A or power B.

Features

- One-coil type

This is a compact type in which both normal side and standby side can be closed (Model utility registration No. 34781).

- Neutral point type

When there is an UPS, power source is transferred after the stability and safety of circuit are checked in case of power failure or power restoration, instead of emergency transfer, and the neutral position (off status) is available via the trip structure.
That is, $A \rightarrow$ off $\rightarrow A / B \rightarrow$ off $\rightarrow B$ as well as $A \rightarrow$ off $\rightarrow B / B$ $\rightarrow \mathrm{off} \rightarrow \mathrm{A}$ is available. As in the existing products, instantaneous transfer is also available according to operating instruction.
Transfer time can be arbitrarily specified via external sequence in the WN type with neutral (Off) position to definitely prevent the contact between the power source and residual voltage at the load side.

- Power-saving type

Power consumption is very low due to instantaneous excitation, short-circuit current strength is high due to the protection of contact pressure by latch mechanism, and a unique structure arc chute facilitates short arc breaking time and low contact wear, realizing semi-permanent lifetime.

- Diversified products

Diversified products including 600V and 63-3200A products in series with dust-proof structure by mold are provided. DC load switching is also available.

- Breaking characteristic

Trip operation by breaking spring always realizes stable breaking characteristic regardless of operation voltage.

W, WP type ... 100A ~ 400A

Type			61W			62W			64W		
Rated current		A	63/100			125/160/200			250/400		
Rated voltage		V	AC 600			AC 600			AC 600		
Pole		P	2, 3, 4			2, 3, 4			2, 3, 4		
Throw		T	Double Throw			Double Throw			Double Throw		
Connection type Front			\bullet			\bullet			\bullet		
Back			\bullet			\bullet			\bullet		
Performance											
Short-ime withstand current (1s)kA		5	10			12			5		
Short circuit peak current		kA	12.5			25			30		
Switching capacity		Class	AC3			AC3			AC3		
Endurance	Electrical	Times	50, 000			50, 000			50, 000		
	Mechanica	Times	250, 000			250, 000			250, 000		
Switching frequency		Time/h	150 (No. 4)			150 (No. 4)			150 (No. 4)		
Transfer sequence			$\mathrm{A} \leftrightarrow \mathrm{B}$								
Operating time	opening	ms	≤ 60			≤ 60			≤ 60		
	closing	ms	≤ 200			≤ 200			≤ 250		
	Closing delay (off)	sec	-			-			-		
Operating voltage and current			2P	3P	4P	2P	3P	4P	2 P	3 P	4P
	DC110V-125V	A	5.4	5.4	7.5	7.5	7.5	11	10	10	12.8
	AC100-120V	A	5.4	5.4	7.5	7.5	7.5	11	10	10	12.8
	AC220-240V	A	2.7	2.7	3.8	3.8	3.8	5.5	5	5	6.4
External dimension and weight											
Front type dimension (mm)		H	191	191	191	252	252	252	278	278	278
		W	204	234	264	234	279	324	280	340	400
		D	112	112	112	112	112	112	132	132	132
Back type dimension (mm)		H	176	176	176	176	176	176	224	224	224
		W	204	234	264	234	279	324	280	340	400
		D	148	148	148	158	158	158	216	216	216
Weight		kg	4.5	6	8	6	8	10	11	14	18
Other details											
Circuit diagram			See F-21								
Time chart			See F-18								
Drawing			See F-26, 27, 29								
Caution			See F-16								

[^1]
Economy Type ATS

WP type
Pause function added

$$
\text { A } \leftrightarrow \text { Pause } \hookleftarrow B
$$

$61 W P$	62WP	64WP
$63 / 100$	$125 / 160 / 200$	$250 / 400$
AC 600	AC 600	AC 600
$2,3,4$	$2,3,4$	$2,3,4$
Double Throw	Double Throw	Double Throw
\bullet	\bullet	\bullet
\bullet	\bullet	\bullet
10	12	30
12.5	25	AC3
AC3	50,000	50,000
50,000	250,000	250,000
250,000	$150($ No. 4)	$150($ (No. 4)
$150($ No. 4)		

Features

- Safe design

Dust-proof structure at the current breaking part provides safe operation.

- For both AC/DC

Control circuit can use both AC and DC power sources.

- Single coil instantaneous excitation type
- One coil, instantaneous excitation type that saves power consumption.
- AC $110 \mathrm{~V} / 240 \mathrm{~V}$ can be available for the operating coil.
(※Refer to the manual)
* Pause function of WP type

W type consists of two-position switch at the power sources A and B , and is an instantaneous operation type in which transfer operating time cannot be adjusted. WP type is equipped with a neutral position between power sources A and B, and provides temporary pause off from A and B within 30 seconds (controlled with timer).
[Ex] Transfer from A to B
(1) A side opening \rightarrow (2) Pause for $3 \sim 30$ seconds
\rightarrow (3) B side closing
This function is introduced to prevent the short circuit between load side and power source side by transferring to other power source after the extinction of residual voltage when the current load is a motor load with high residual voltage.

If 30 seconds or more of pause or "Off" condition is required, use the standard WN type.
This function can also be disabled.

* For details, see F-18.

CTTS ... 100A ~3000A

Uninterruptible transfer type added
$A \leftrightarrow$ Synchronizing $\leftrightarrow B$

Condition for uninterruptible transfer
Phase difference: Electric angle $\leq 10^{\circ}$, Frequency difference: $\leq 0.2 \mathrm{~Hz}$,

[^2]
Uninterruptible Transfer Type CTTS

After simultaneous supply of normal power (A) and emergency generation power (B), this closed transition transfer switch (CTTS) detects the differences for voltage and frequency, verifies the synchronizing condition, and performs uninterruptible transfer automatically within 0.1 s (100 ms) in the direction of control.

- Major Uses
- Major plants

Uninterruptible transfer to emergency generator power is available in case of a voltage drop or power failure of normal power source, for example by lightning, or a longterm power failure. Transfer to normal power source is also available in an uninterruptible way.

* Uninterruptible transfers
(1) Scheduled outage from Power company side
(2) Generator \rightarrow Power company transfer when Power company power supply is restored
(3) When temporary failure is expected due to weather conditions, etc.
(4) When generators or equipment are to be tested.
- Electric facilities in banks and stations

Uninterruptible transfer is available in case of scheduled maintenance such as regular inspection.

- Transfer facility for UPS power sources Uninterruptible transfer is available if the phase difference between both power sources is within the regulated value.

Transfer operations

\& In the transfer from normal power to generator power: Transfer from closed state to generator power (For test or power source transfer)
*Retransfer from generator power to normal power: Transfer from closed state to normal power
\& Transfer from normal power to generator power: Transfer from opened state to generator power (In case of normal power outage)
*Retransfer from generator power to normal power: Transfer from closed state to normal power (Uninterruptible transfer to normal power)

.. ATS, CTTS (Automatic Transfer Switches)

Considerations for Application and Selection

- Applied standard

- JEM 1038 . UL 1008
-KSC 4504 . KSC 0703

- Control instruction

Closing and trip transfer operation is completed in 0.3 s , but operating instruction of 0.5 s or more can ensure stable operation.

- Interlock

Install the interlock (electrical) at the operation circuit so that there can be no simultaneous instruction for power A and power B. For WN type, set the sequence so that there can be no closing and trip instructions in the same direction.

- Operational transformer capacity

Use the capacity greater than the value calculated with the following equation for the transformer capacity for operation circuit. Operating voltage \times Operating current $\times 0.5=()$ VA
Ex) Operating voltage : AC 220 V , operating current: 4 A $220 \times 4 \times 0.5=440 \mathrm{VA}$
Use the transformer of 440VA or higher.

Control circuit

ATS is designed to switch off the operating current using the internal switch after operation. Switching off the operating current using the auxiliary switch in the main body leads to erroneous operation.

- Selection of control relay

Use the voltage relay 27 and 84 and timer with a conducting current at the contact higher than the operating current of ATS. It is safe to select a relay that can break the operating current, considering chattering, etc. of control relay.

* When the operating power is unstable, please use the voltage buildup relay.

Low Voltage Automatic Transfer Switch

O Type Indication and Order Codes

... ATS, CTTS (Automatic Transfer Switches)

Caution

Place for installation

Avoid high temperature, high humidity and hazardous gas.

- Installating direction

ATS is designed to be installed in a specified direction. Conform to the direction because the change of installing direction may change the operating characteristics.
Install the ATS so that the name plate on the main body can be read in front, vertically to the panel surface without distortion.

* When the normal installation is impossible due to wiring or device arrangement, please consult us.

- Operating power

When there is a dropper circuit for the DC operating power, be sure to connect the operating power of ATS to the input of the dropper circuit.

- Control circuit wiring

Be sure to use sufficient control power and control cord. Be especially careful about the lack of battery capacity or charging in case of DC operation.

- Main circuit connection

For connection, select the wires and terminals conforming to the current capacity and connect them firmly. Do not allow excessive stress on the main circuit terminals.
Be sure not to allow excessive stress on the main circuit terminal in the connection by bus bar.

- Caution in operating the manual handle

Operate ATS manually only for the purpose of detailed inspection on operating mechanism and conducting part under no-load.
Power and switching speed of manual operation differs by operator, so that it cannot ensure the switching characteristics of ATS.

- Maintenance

Conduct regular maintenance to keep the performance of ATS.

[^3] section of the instruction manual.

Low Voltage Automatic Transfer Switch

Options

Condenser Trip Device

1) When used as a CTD

For immediate trip in case of power failure, connect G and H terminals to the trip circuit. An additional switch can trip the circuit at a specific time.
(Normal operation range: within 30s)
2) When used as a rectifier C-D and E-F terminals can be used for the DC power.
(Close, open, power of motor OCR, etc.)

Low Voltage Automatic Transfer Switch

... ATS, CTTS (Automatic Transfer Switches)

Contact Time Chart

WN, WS Type

WP Type

W type

Low Voltage Automatic Transfer Switch

Circuit Diagram

WN, WS Type

Internal Circuit

CC: Closing coil

Si: Silicon rectifier
LS: Select switch
ATS $_{1}$, ATS $_{2}$
BTS $_{1}$, BTS $_{2}$: Trip control switch
AX, BX: Control switch
SC: Selection coil
TC: Trip Coil
AUX: Auxiliary switch

Operation terminal
$A_{1}-A_{2}$: Power A side closing terminal B_{1} - B_{2} : Power B side closing terminal $A T_{1}-A T_{2}$: Power A side trip terminal $B T_{1}-B T_{2}$: Power B side trip terminal

Operating Circuit

In normal transfer (instantaneous transfer)

Note) Operating in the same way as in W type

In using timer for transfer

In manual-automatic COS part

In condenser trip

X1: Control relay, CTD: Condenser trip device Set the time for the timer, considering the charging time of condenser

... ATS, CTTS (Automatic Transfer Switches)

Circuit Diagram

WP Type

Operating
 $B \rightarrow$ Aransfer/Pause at the neutral position

Caution

- For temporary pause at the neutral position, connect the timer and limit resistor to terminals T1 and T2.
* Timer and limit resistor have to be prepared individually.
- Limit resistor

Type	61WP~62WP		64WP		
Operating voltage	AC110-120V	AC220-240V	AC110-120V	AC220-240V	
Timer	Select a timer that can break the operating current. Adjusted time of timer				
Adjusted time of timer	3sec ~ 30sec				
Limit resistor	Rated power	200 W	200 W	200 W	200 W

Operating $\quad \mathrm{A} \rightarrow \mathrm{B}, \mathrm{B} \rightarrow \mathrm{A}$ two-way transfer/ Circuit 2 Pause at the neutral position

- The limit resistor is not required for 3 seconds or less pause at the neutral position
- Use AC 110-120V or AC $220-240 \mathrm{~V}$ for the operating voltage in case of the pause at the neutral position.
- For continuous operation, limit the operating times to 5 or less. Be careful because 5 or more continuous operations may cause coil overheating or coil burnout.
- For a pause of 30 seconds or more (both powers off), use our WN- type products.

Low Voltage Automatic Transfer Switch

Circuit diagram

W type
Internal Circuit

$\mathrm{Xa}_{1}-\mathrm{Xa}_{2}{ }_{\mathrm{Xb}_{1}-\mathrm{Xb}_{2}}$: Control switch
CC: Closing coil
Si: Silicon rectifier

Operation terminal

$A_{1}-A_{2}$: Power A side closing terminal B_{1} - B_{2} : Power B side closing terminal AUX: Auxiliary switch

Operating
Circuit 1
In normal transfer (instantaneous transfer)

Operating In manual-automatic transfer COS part Circuit 2

HS type

Control
Circuit diagram

... ATS, CTTS (Automatic Transfer Switches)

Circuit Diagram

CTTS

Operation Flow Chart

Operating
Circuit

Low Voltage Automatic Transfer Switch

Internal Circuit
" A " Power source (Utility)

$\mathrm{A}_{1}, \mathrm{~A}_{2}$	"A" Power source side(On)
$\mathrm{AT}_{1}, \mathrm{AT}_{2}$	"A" Power source side(Trip)
ATS 1, ATS $_{2}$	Switch, Position contacts
BTS ${ }_{1}$, BTS 2	
AUX ${ }_{1,2}$	Switch, Auxiliary
AX, BX	Switch, Control
$\mathrm{B}_{1}, \mathrm{~B}_{2}$	"B" Power source side(On)
$\mathrm{BT}_{1}, \mathrm{BT}_{2}$	"B" Power source side(Trip)
C	Coil, Closing
COM	Common
CTTS	Closed transition transfer swiitch
$\mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$	Standby power source conn.
NO	Normally open
NC	Normally closed
$\mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}$	Utility power source
S1A, S1B, S1C	Switch, Position sensing
S2A, S2B	
S3A, S3B, S3C	
TC	Coli, Trip
$\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$	Costomer load conn.

All contacts of switch shown in:

Utility: Closed
Standby: Open
\times : Closed O : Open

Utility side	Switch position	Utility closed	Neutral	Utility open
Aux. 1	COM - NC	\times	\circ	0
	COM - NO	0	\times	\times

Standby side	Switch position	Standby Open	Neutral	Standby closed
Aux. 2	COM - NC	\circ	\circ	\times
	COM - NO	\times	\times	\circ

... ATS, CTTS (Automatic Transfer Switches)

Outside Drawing

WP Type

```
61WP Front Connection
```

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2 P	214	113
3 P	244	143
4 P	274	173

62WP

Front Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2P	244	143
3P	289	188
$4 P$	334	233

64WP

Front Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2 P	290	174
3 P	350	234
4 P	410	294

(1) Operating circuit terminal (5) Load side main circuit terminal
(2) Manual operation shaft
(6) Power B side main circuit terminal
(3) Auxiliary switch
(7) Transfer indicator

(4) Power A side main circuit terminal (8) Manual handle

Low Voltage Automatic Transfer Switch

Outside Drawing

WP Type
 61WP
 Back connection

The arc space dimension $(\mathrm{S} 1)$ is
30 mm for a main circuit voltage
of 220 V , and 60 mm for 600 V

	A	B
2P	214	113
3P	244	143
4P	274	173

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2P	244	143
3P	289	188
4P	334	233

62WP

Back Connection

64WP
Back Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V

	A	B
2 P	290	174
3 P	350	234
4 P	410	294

(1) Operating circuit terminal
(5) Load side main circuit terminal

(3) Auxiliary switch (7) Transfer indicator
(4) Power A side main circuit terminal (8) Manual handle

... ATS, CTTS (Automatic Transfer Switches)

Outside Drawing

WN, W Type

61WN, 61W Front Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2P	204	103
3P	234	133
4 P	264	163

62WN, 62W
Front Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2 P	234	133
3P	279	178
4 P	324	223

64WN, 64W
Front Connection
 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2P	280	164
3P	340	224
4 P	400	284

[^4] (5) Load side main circuit terminal
(3) Auxiliary switch
(7) Transfer indicator
(4) Power A side main circuit terminal (8) Manual handle

Low Voltage Automatic Transfer Switch

Outside Drawing

WN, W Type

61WN, 61W Back Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2 P	204	103
3 P	234	133
4 P	264	163

62WN, 62W
Back Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2 P	234	133
3 P	279	178
4 P	324	223

64WN, 64W
Back Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2 P	280	164
3 P	340	224
4 P	400	284

(1) Operating circuit terminal (5) Load side main circuit terminal
(2) Manual operation shaft (6) Power B side main circuit terminal
(3) Auxiliary switch
(7) Transfer indicator

(4) Power A side main circuit terminal (8) Manual handle

... ATS, CTTS (Automatic Transfer Switches)

Outside Drawing

$$
66 \mathrm{WN}-616 \mathrm{WN}
$$

Back Connection

Type		66WN	68WN 610WN	612WN	616WN
A	3P	405	450	510	10
	4P	470	530	610	10
B	3P	365	410	480	\%
	4P	440	500	580	30
E		75	74	71	1
F		117.5		116.5	
G		10	12	15	5
H		15			
I		80	88	97.5	. 5
J		65	80	100	0
K	3 P	410	410	410	10
	4P	410	410	410	10
L	3P	20	20	15	5
	4P	15	15	15	5

ain circuit voltage	S1	S2
200 V	45 mm	430 mm
600 V	90 mm	450 mm

66WN - 616WN

Front Connection

Type				66 WN	68 WN
610 WN		612 WN	616 WN		
A	3 P	465	510	570	
	4 P	530	590	670	
B	3 P	435	480	540	
	4 P	500	560	640	
C	545	608.5	645		
G	10	12	15		
I	95.7	101.6	112.4		
J	65	80	100		
L	73	91	111		
M	15	15	15		
N	68	79.5	109		
Q	44	78	65		
R	65	74	76		
S	55	55	57		

620/630WN

Back Connection

Type			620 WN
A	3 P	675	630 WN
	4 P	810	1000
B	3 P	635	785
	4 P	770	970
E	119	114	
F	132.5	130	
G	15	20	
H	15	20	
I	121	146	
J	135	185	
L	90	125	

Arc space dimension

Arc space dimen		
Main circuit voltage	S1	S2
200 V	50 mm	560 mm
600 V	100 mm	600 mm

(2) Manual operation shaft
(6) Power B side main circuit terminal

(3) Auxiliary switch (7) Transfer indicator

[^5][^6]
Low Voltage Automatic Transfer Switch

... ATS, CTTS (Automatic Transfer Switches)

Panel Processing Dimensions

WN, W, WP Type
61-64WN, 61-64W, 61-64WP
Front Connection

66-616WN
Front Connection

W, WN-Type			
Type	606-61W,WN	62W, WN	64W, WN
2 P	103	133	164
B 3P	133	178	224
4 P	163	223	284
D	152	152	200
2 P	85	110	135
P 3P	115	155	195
4P	145	200	255
Q	140		180
T	7.5		9
R	M5		M8

WP-Type			
Type	606-61WP	62WP	64WP
2P	113	143	174
B 3 P	143	188	234
4P	173	233	294
D	152	152	200
2P	85	110	135
P 3P	115	155	195
4 P	145	200	255
Q	140		180
T	7.5		9
R	M5		M8

Type		66 WN	68 WN	610 WN
612 WN 616WN				
B	3 P	435	480	540
	4 P	500	560	640
		360	360	360
Y	M 12	M12	M12	

66-620WN
 630WN(3P)
 Back Connection

630WN(4P)

Type	66WN	68WN/610WN	612WN/616WN	620WN	630WN
B 3P	365	410	480	635	785
B $4 \mathrm{4P}$	440	500	580	770	970
I	360	360	360	548	548
3P	335	380	440	420	545
4P	400	460	540	555	730
K	330	330	330	460	460
L	20	20	20	28	40
Z	-	-	-	-	485

... ATS, CTTS (AutomaticTtransfer Switches)

Outside Drawing

S Type

66S

Front Connection

	3 P	4 P
A	371.2	441.2
B	360.7	430.7
C	254	324

Arc space dimension

Main circuit voltage	S 1	S 2
200 V	45 mm	226 mm
600 V	90 mm	226 mm

665

Back Connection

	3 P	4 P
A	371.2	441.2
B	360.7	430.7
C	254	324

Arc space dimension

Main circuit voltage	S1	S2
200 V	45 mm	226 mm
600 V	90 mm	226 mm

(4) Power A side main circuit terminal (8) Manual handle

Low Voltage Automatic Transfer Switch

Outside Drawing

S Type
610W
Front Connection

	3 P	4 P
A	166	249
B	333	416
C	452.7	535.7
D	6	8
E	12	16

... ATS, CTTS (Automatic Transfer Switches)

Outside Drawing

S Type

616/620WS
Back Connection

Classifi cation	616 WS		620 WS	
	3 P	4 P	3 P	4 P
A	108	108	133	133
B	216	324	266	399
C	88.5	88.5	100	100
D	85.8	85.8	97.8	97.8
E	304	304	316	316
F	408	516	483	616
G	527.7	635.7	602.7	735.7
H	307.4	307.4	294.4	294.4
I	75	75	100	100
J	12	12	15	15
K	20	20	28.8	28.8
L	40	40	44.4	44.4
M	40	40	44.4	44.4
N	36	48	36	48
O	14	14	14.5	14.5

(2) Manual operation shaft (6) Power B side main circuit terminal
(3) Auxiliary switch (7) Transfer indicator
(4) Power A side main circuit terminal (8) Manual handle

... ATS, CTTS (Automatic Transfer Switches)

Outside Drawing
 WS Type
 630WS
 Back Connection

	$3 P$	4 P
A	825	1010
B	785	970
C	-	485
D	4	6
E	54	72

(1) Operating circuit terminal
(5) Load side main circuit terminal

(2) Manual operation shaft (6) Power B side main circuit terminal

(3) Auxiliary switch (7) Transfer indicator
(4) Power A side main circuit terminal (8) Manual handle

Low Voltage Automatic Transfer Switch

... ATS, CTTS (Automatic Transfer Switches)

Outside Drawing

WS Type
<600A >

<3000A>

Back
<1000A~2000A>

Classification		600A		1000A		600A		2000A		$\begin{array}{\|r\|} \hline 3000 \mathrm{~A} \\ \hline \text { Back } \\ \hline \end{array}$
		Front	Back	Front	Back	Front	Back	Front	Back	
A	3P	200	200	349.4	349.4	349.4	349.4	-	349.4	548
	4P	200	200	349.4	349.4	349.4	349.4	.	349.4	548
B	3 P	254	254	333	333	408	408	-	483	785
	4 P	324	324	416	416	516	516	-	616	970
C	-	200	200	349.4	349.4	349.4	349.4	-	349.4	-
D	3 P	-	209	-	264.5	-	339.5	-	414.5	545.2
	4P	-	279	-	347.5	-	447.5	-	547.5	730
E	-	-	14	-	28.5	-	28.5	-	28.5	40
F	-	-	180	-	380	-	390	-	390	-
G	-	-	-	-	-	-	-	-	-	-
H	-	3	3	4	4	4	4	-	4	6
1	-	9	9	14	14	14	14	-	14	14

Low Voltage Automatic Transfer Switch

... ATS, CTTS (Automatic Transfer Switches)

Outside Drawing

HS Type

22HS

Bus dimension

... ATS, CTTS (Automatic Transfer Switches)

Outside Drawing

CTTS Type

61CT
Front Connection
The arc space dimension (S1) is
30 mm for a main circuit voltage

of 220 V , and 60 mm for 600 V .		
	A	B
2P	210.8	199.8
3P	240.8	229.8
$4 P$	270.8	259.8

62CT
 Front Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .

	A	B
2P	240.8	229.8
3P	285.8	274.8
$4 P$	330.8	319.8

(5) Power A side main circuit terminal (6) Auxiliary switch
(3) Power B side main circuit terminal (4) Load side main circuit terminal (7) Manual handle

Low Voltage Automatic Transfer Switch

64CT

Front Connection

The arc space dimension (S1) is 30 mm for a main circuit voltage of 220 V , and 60 mm for 600 V .		
	A	B
2 P	292.5	278.5
3P	352.5	338.5
4 P	412.5	398.5

(1) Manual operation hole	(2) Transfer indicator	(3) Power B side main circuit terminal (4) Load side main circuit terminal
(5) Power A side main circuit terminal	(6) Auxiliary switch	(7) Manual handle

66-616CT

Front Connection

(1) Operating circuit terminal (5) Load side main circuit terminal

(2) Manual operation hole
 (6) Power B side main circuit terminal

(3) Auxiliary switch (7) Transfer indicator

1200/1600A
 (8) Manual handle

... ATS, CTTS (Automatic Transfer Switches)

Outside Drawing

CTTS Type

```
620-630CT
Back Connection
```

Arc space dimension

Main circuitvoltage	S1	S2
200 V	50	560
600 V	100	600
Type		
2000 A		3000 A
A	3 P	683
	4 P	818
B	3 P	645
	4 P	780
E	128.5	795
F	132.5	1280
G	15	20
H	15	20
I	123	148
J	135	185
L	90	125

(1) Operating circuit terminal (5) Load side main circuit terminal
(2) Manual operation hole
(6) Power B side main circuit terminal
(3) Auxiliary switch
(7) Transfer indicator
(4) Power A side main circuit terminal (8) Manual handle

Panel Processing Dimensions

$$
\begin{aligned}
& 61-64 \mathrm{CT} \\
& \text { Front Connection }
\end{aligned}
$$

Type		100 A	200 A	400 A
A	2 P	199.8	229.5	278.5
	3 P	229.8	274.8	338.5
	4 P	259.8	319.8	398.5
B			152	200
C		76	100	
R			M5	M8

Dimension for Panel
CTTS

620-630CT
Back Connection

High-Voltage Vacuum Transfer Switch(VTS)

Contents

1. Ratings and Specifications
2. About High-Voltage Power Transfer
3. Circuit Diagram
4. Outside Drawing

Vacuum Transfer Switch, VTS ... 7.2kV , 400/600A

Features

- Built-in electrical/mechanical interlock.

Interlock at the transfer part prevents erroneous operation. Design is easy without having to consider external electrical/mechanical interlock.

- Long lifetime

The vacuum interrupter employed at the switching part has 20 years or more vacuum lifetime, with very little contact wear.

Easy maintenance
This VTS is draw-out type for which maintenance is easy, and has open type mold insulation barrier for easy cleaning. Transfer operation is instantaneous excitation type, and electric power is consumed only at the transfer operation.

- Multiple stage installation available

Panel width can be reduced in comparison to fixed type products. This product also allows other multiple-stage high voltage devices to be installed. It is light-weight for easy handling.

Economical Characteristic Comparison

Classification	VTS	Fixed switch transfer	$\mathbf{2}$ breakers
Product price	Built-in electrical/mechanical interlock. Instantaneous excitation	Built-in electrical/mechanical interlock. Instantaneous excitation	Mechanical interlock is required to secure safety
	Low price	High price	
Installation price	VTS +3 VCBs are installed on one cubicle plane. Minimum space.	Fixed type+3 VCBs are installed requiring at least two cubicle planes.	Five breakers in total are installed requiring at least two cubicle planes.
	Low price Draw-out type, easy to be drawn out and maintained in a short time	Fixed type, difficult to be drawn out and maintained in a long time	Operation at the mechanical interlock must be checked after maintenance
	Low price	High price	Medium pric
Total	Low price	Medium pric	High price

High-Voltage Vacuum Transfer Switch (VTS)

VITZROTECH vacuum transfer switch provides excellent insulating performance by using vacuum interrupter and BMC barrier, and is equipped with electrical and mechanical interlock and overcurrent lock to prevent accidents by breaking failure in case of short circuit and overcurrent conduction.

Applied Facilities

- Industrial plants under the risk of great damage by power failure
- Limited space including basement machine room
- Hospitals, broadcasting companies, airports and banks that does not allow electric outage.
- Department stores, movie theaters, hotels, etc. that are designated as special fire protection facilities according to the Fire Regulation.

Type	Fixed	VTS-6N4		VTS-6N6	
	Draw-out	VTS-6N4E		VTS-6N6E	
Rated current	A	400		600	
Rated voltage	kV	7.2			
Pole	P	3			
Performance					
Short-ime withstand current (1s)kA	12.5				
Rated making current	kA	31.5			
Lock current	A	2500			
Endurance Rated current switching	Times	10, 000			
No-load switching	Times	10,000			
Transfer sequence		A \leftrightarrow off(trip) $\rightarrow \mathrm{B}$			
Power Main circuit-earth	kV	22			
frequency Between main circuits (wo-phase)	kV	22			
withstand etween main circuits (one-phase)	kV	35			
Voltage Control circuiteath	kV	2			
Impulse Main circuit-earth withstand voltage Between main circuits (two-phase)	kV	60			
	kV	60			
	kV	70			
Operation type		Magnetic operation (Instantaneous energized type)			
Operating power Closing		DC 100/110V, 30A or less			
Trip)		DC 100/110V, 5 A or less			
Control		DC 100/110V, 0.3A or less			
External dimension and weight					
Weight Fixed Draw-out	kg	120		130	
	kg	140		150	
Dimension(mm)		Fixed	Draw-out	Fixed	Draw-out
	H	585	545	585	545
	W	530	592	530	592
	D	700	870	700	870
Reference standard		JIS C4605			

... VTS (Vacuum Transfer Switches)

About High-Voltage Power Transfer

- Example of Power Transfer Circuit

For high-voltage power transfer (two-line supply, normal-standby/normal-generator), the designer is highly responsible for selecting methods and devices because there is no unified regulation on the circuit and devices.
An example of power transfer circuit is as follows.

- Purpose of Using a Switch in Power Transfer

"High-voltage receiving facility' states that "A section switch shall be installed at the supply point in terms of security". The section switch refers to a switch that sectionalizes the power line, and increases the withstand voltage between terminals of single-phase main circuits above surroundings (e.g. main circuit-earth) and prevents the entrance of abnormal voltage from inside and outside by grounding it.

Performance of Major High-Voltage Devices

(In case of 8 kA or 12.5 kA for receiving point short circuit current, and 7.2 kV receiving end)

			Disconnecting switch	Switch	Breaker	Contactor Switch
Section (Disconnection) performance			\bigcirc	\bigcirc	\times	\times
	Power frequency	Main circuil-earth	35kV	35 kV	22kV	16kV
		Between main circuits (two-phase)	22 kV	22 kV	22 kV	16kV
		Between main circuits (one-phase)	22kV	22 kV	22 kV	16kV
	Impulse	Main circuit-earth	70kV	70kV	60kV	N/A
		Between main circuits (two-phase)	60kV	60kV	60kV	45kV
		Between main circuits (one-phase)	60kV	60kV	60 kV	45k
Load current switching performance			\times	\bigcirc	0	\bigcirc
Short-circuit current breaking performance			\times	(Lock in case of exceeding the breaking current of switch)	0	(Max. 4.4A)
Short-circuit withstand current performance			0	0	\bigcirc	$\begin{gathered} x \\ (\text { Max. } 4.4 \mathrm{~A}) \end{gathered}$
Making current performance			\times	0	0	\times

For high-voltage power transfer (two-line supply, normal-standby/normal-generator), the designer is highly responsible for selecting methods and devices because there is no unified regulation on the circuit and devices.
Fig. 1 is a representative power transfer single line diagram. By examining this circuit considering the "High-voltage receiving facility guide' , a risk can be recognized if a switch equipped with disconnecting capacity is not applied to normal $(A) \leftrightarrow$ normal (B) transfer or normal \leftrightarrow generator transfer.

Fig. 1. One Line Diagram
(1) When using VTS
(2) When using two breakers

Section point needs sectionalizing (disconnecting) function, theoretically.

Interlock by two CBs generally has only electrical interlock, without mechanical interlock, leading to risks.

- Example of VTS Application

(1) Normal-generator

Pause before the restoration of normal power is based on the 'Generation facilities installation guide', and there is no limit for normal \rightarrow generator transfer time in case of normal power outage.

Fig 2. Example of Transfer Using VTS

... VTS (Vacuum Transfer Switches)

Fig. 3 Transfer Operation in Case of Failure at the Normal Power Side

Fig. 4 Transfer Operation in Case of Restoration at the Normal Power Side

(2) Example of normal-standby transfer (receiving two lines)

Fig. 5 shows normal-standby transfer circuit and operation, which is rarely used in new facilities but usually used to modify existing facilities. In this case, there is no limit in the transfer time, but time is set according to the number of relays and section switches in the distribution system to prevent the reclosing of faulty line.

Fig. 5 Normal-Standby Transfer Circuit and Operation Diagram

Surge protection when using VTS

Fig. 6 Transfer Operation in Case of Failure at the Normal Power Side

Vacuum device cuts off the arc in high vacuum, so that the breaking capacity is excellent due to rapid diffusion of arc and high insulation strength in vacuum state. Meanwhile, in switching transformers or rotary devices including no-load motor and generator, breaking of current before approaching zero point may cause overvoltage by current chopping, therefore leading to insulating breakdown of motors, etc. That's why surge protection is required.

VTS requires no surge protection because the transfer is conducted at no voltage. (Surge protection is required, however, when VCB is used as a breaker.)

- For the selection of surge absorber (S/A), see our S/A catalog.

Ratings of surge absorber

Type	KMSA-3.6	KMSA-7.2	
Rated voltage	kV	3.3	6.6
Applied circuit voltage	kV	3.6	7.2
Operation starting voltage	kV	$9 \sim 10$	$18 \sim 20$
Discharge voltage	kV	≤ 13	≤ 26
Nominal discharge current	kA	5	5
Discharge withstand current rating $(4 \times 10 \mu \mathrm{~s}) \mathrm{kA}$	40	40	
Rated frequency	Hz	60	60
Weight	kg	0.41	0.6

High-Voltage Vacuum Transfer Switch (VTS)

... VTS (Vacuum Transfer Switches)

Circuit Diagram

High-Voltage Vacuum Transfer Switch (VTS)

Outside Drawing

Fixed Type (N)

Draw-Out Type (E)

[^0]: (1) Switching capacity : AC3 class : Closing $10 \times \mathrm{le}$, breaking $8 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.35$ DC1 class : Closing $1.1 \times \mathrm{le}$, breaking $1.1 \times \mathrm{le}, \mathrm{L} / \mathrm{R}=1 \mathrm{~ms}$ AC2 class : Closing $4 \times \mathrm{le}$, breaking $4 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.65$

[^1]: (1) Switching capacity : AC3 class : Closing $10 \times \mathrm{le}$, breaking $8 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.35$

 DC1 class : Closing $1.1 \times \mathrm{le}$, breaking $1.1 \times \mathrm{le}, \mathrm{L} / \mathrm{R}=1 \mathrm{~ms}$

[^2]: (1) Switching capacity : AC3 class: Closing $10 \times \mathrm{le}$, breaking $8 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.35$ DC1 class: Closing $1.1 \times \mathrm{le}$, breaking $1.1 \times \mathrm{le}, \mathrm{LR}=1 \mathrm{~ms}$ AC2 class: Closing $4 \times \mathrm{le}$, breaking $4 \times \mathrm{le}, \operatorname{Cos} \varnothing=0.65$
 (2) Trip : Opening of a circuit to a neutral position off from power A or power B .

[^3]: For further details of maintenance, please refer to the maintenance

[^4]: (1) Operating circuit terminal

[^5]: (4) Power A side main circuit terminal (8) Manual handle

[^6]: * Earth terminal is mounted at the right side of operating circuit terminal support.

