DS-VA-8503-eng January, 2017

Data Sheet

NRSTM **Needle Control Valves** Models 8503 and 8504

Variable Area

Low Flow Gas and Liquid **Flow Control Valves**

Description

The Brooks[®] NRS[™] (non-rising stem) control valves are designed specifically for extremely low flow gas and liquid applications. Straight and 90° angle pattern models in stainless steel are available. They feature a means of adjusting a sliding tapered needle which prevents sticking due to foreign matter in the fluid. These valves are particularly suitable for precise control requirements and possess a high turns to lift ratio. The flow is constant for any given stem position.

Six needles with different tapers provide a wide choice of flow ranges. Needles and orifices can be changed without removing the valve body from the line (two different orifices are used, one for needle sizes 1-3, another for sizes 4-6).

Features

- Smooth non-reversing flow characteristics
- Constant flow at any given stem position .
- Fifteen turns full open to full close provides high turn to lift ratio for excellent resolution
- Six interchangeable needle tapers, each increases capacity by an approximate factor of three
- O-ring seal cannot be damaged by overtightening
- Panel mounting nuts included standard
- 1/8" NPT connections integrally machined into body

Model 8504 Straight Pattern Needle Valve

Product Specifications

Capacities and Pressure Drops	See Capacities and Pressure Drops Table			
Max. Operating Pressure	Stainless Steel Model: 1000 psig			
Max. Operating Temperature Stainless Steel Model: 250°F				
Connections Standard: 1/8" Female NPT - integral				
	Optional: 1/8", 1/4" compression fitting; 1/4" female NPT; 1/4" ID hose type adaptors			
Dimensions	Dimensions See Dimensions Figure			
Materials of Construction Stainless Steel M	ddel			
Body	316 stainless steel			
Orifice	Size 1-3: Stainless steel and Teflon®; Sizes 4-6: Stainless Steel			
Valve Needle	316 stainless steel			
Plunger	Stainless steel			
O-rings	Viton® fluoroelastomers			

Capacities and Pressure Drops Table

		Maximum Capacity			
Needle	Orifice	(Std. cc/min.)			
Taper No.	Туре	Helium	Water		
1		300	150	4	
2	Small	700	350	10	
3	(0.041")	1,400 600		20	
4		6,000	2,400	80	
5	Larger	18,000	6,800	200	
6	(0.093")	55,000	22,000	650	

Capacities measured with 10 psig supply and an atmospheric pressure exhaust. Flow capacities will vary for different gases, liquids and pressures. Consult factory for further information.

Exploded-View NRS[™] Valve

Product Dimensions

Needle Valve Determination

The correct needle valve can be determined for any gas by using one of the formulas below:

1. Subcritical Flow Formula (when downstream pressure, P₂, is greater than the critical pressure (P_c) or $P_1 < 2P_2$)

$$C_v = \frac{Q}{454} \sqrt{\frac{(SG) \times (T)}{(P_1^2 - P_2^2)}}$$

2. Critical Flow Formula (when downstream pressure, $P_{2'}$, is less than the critical pressure (P_c) or $P_1 > 2P_2$)

$$C_v = \frac{Q\sqrt{(SG) x (T)}}{385 x P_1}$$

Note: Critical pressure is equal to approximately 1/2 of the upstream absolute pressure.

Where:

Valve flow coefficient =

- C_v Q = Gas flow in slpm
- Gas specific gravity (Air at 14.7 psia and $70^{\circ}F = 1.0$) SG =
- Т Absolute temp. of flowing gas in °R (°F + 460) =
- Upstream pressure (psia) P_1 P_2 P_c =
- Downstream pressure (psia) =

= Critical pressure (psia)

Table 1 C_v versus Size for NRS Valves

Valve Size	C _v
1	0.00029
2	0.00066
3	0.0013
4	0.0057
5	0.017
6	0.052

Table 2	Specific	Gravity	Table	for Gases
---------	----------	---------	-------	-----------

	Specific Gravity Referred	
Gas	to Air at 70°F (SG)	
Acetylene	0.907	
Air	1.0	
Ammonia	0.587	
Argon	1.38	
Butane	2.07	
Carbon Dioxide	1.529	
Helium	0.138	
Hydrogen	0.0695	
Methane	0.554	
Nitrogen	0.967	
Oxygen	1.105	
Propane	1.562	
Sulfur Dioxide	2.264	

Example 1

Select a valve size to pass 25 slpm of helium at 70°F with an upstream pressure of 600 psig and a downstream pressure of 500 psig.

Q	=	25 slpm
SG	=	0.138 (from Table 2)
Т	=	$70^{\circ}F + 460^{\circ} = 530^{\circ}R$
P ₁	=	600 psig + 14.7 psi = 614.7 psia
P,	=	500 psig + 14.7 psi = 514.7 psia
P	=	0.5 x P ₁ = 0.5 x 614.7 = 307.3 psia
<u> </u>		1

Since P_2 is greater than P_c , substitute the values of the above variables in Formula 1.

$$C_v = \frac{25}{454} \sqrt{\frac{0.138 \times 530}{(614.7^2 - 514.7^2)}} = 0.0014$$

Refer to Table 1 and select the valve having the next largest C_v. Therefore, a Size 4 valve would be specified for helium at the above conditions.

Example 2

Select a valve size to pass 25 slpm of helium at 70°F with an upstream pressure of 600 psig and a downstream pressure of 200 psiq.

Q	=	25 slpm
SG	=	0.138 (from Table 2)
Т	=	$70^{\circ}\text{F} + 460^{\circ} = 530^{\circ}\text{R}$
P ₁	=	600 psig + 14.7 = 614.7 psia
Ρ,	=	200 psig + 14.7 = 214.7 psia
P	=	0.5 x P ₁ = 0.5 x 614.7 = 107.3 psia
~		÷

Since P₂ is less than P_c, substitute the values of the above variables in Formula 2.

$$C_{v} = \frac{25}{385 \times 614.7} = 0.0009$$

Refer to Table 1 and select the valve having the next largest C_v. Therefore, a Size 3 valve would be specified for helium at the above conditions.

Model Code

Code Description	Code Option	Option Description		
I. Base Model Number	8503D	NRS Angle pattern		
	8504D	NRS In-line pattern		
II. Material of Construction	2	316 Stainless Steel		
III. Needle and Orifice Size	A	Size 1		
	В	Size 2		
	C	Size 3		
	D	Size 4		
	E	Size 5		
	F	Size 6		
IV. Operating Pressure	4	Standard 600 PSI Brass; 1000 PSI Stainless Steel		
V. O-ring Material	Α	Buna N		
	В	Viton		
VI. Inlet/Outlet Connections,	1A	1/8" NPT integral		
Size & Type 2B		1/8" compression		
3C		1/4" NPT		
	4D	1/4" compression		
	5E	1/4" ID hose		

Sample Standard Model Code

		III	IV	V	VI
8504D	2	C	4	Α	1A

Brooks Service and Support

Brooks is committed to assuring all of our customers receive the ideal flow solution for their application, along with outstanding service and support to back it up. We operate first class repair facilities located around the world to provide rapid response and support. Each location utilizes primary standard calibration equipment to ensure accuracy and reliability for repairs and recalibration and is certified by our local Weights and Measures Authorities and traceable to the relevant International Standards.

Visit www.BrooksInstrument.com to locate the service location nearest to you.

START-UP SERVICE AND IN-SITU CALIBRATION

Brooks Instrument can provide start-up service prior to operation when required. For some process applications, where ISO-9001 Quality Certification is important, it is mandatory to verify and/or (re)calibrate the products periodically. In many cases this service can be provided under in-situ conditions, and the results will be traceable to the relevant international quality standards.

CUSTOMER SEMINARS AND TRAINING

Brooks Instrument can provide customer seminars and dedicated training to engineers, end users, and maintenance persons. *Please contact your nearest sales representative for more details.*

Due to Brooks Instrument's commitment to continuous improvement of our products, all specifications are subject to change without notice.

TRADEMARKS Brooks, NRS Brooks Instrument, LLC All other trademarks are the property of their respective owners.

Global Headquarters Brooks Instrument 407 West Vine Street Hatfield, PA 19440-0903 USA Toll-Free (USA): 888-554-FLOW T: 215-362-3500 F: 215-362-3745 BrooksAM@BrooksInstrument.com

A list of all Brooks Instrument locations and contact details can be found at www.BrooksInstrument.com

©Copyright 2017 Brooks Instrument, LLC All rights reserved. Printed in U.S.A.