BU series CMOS Camera

Instruction Manual

Model B/W Camera : BU2409MG Color Camera : BU2409MCG / BU2409MCF

Thank you for purchasing our product.

Before using this CMOS camera, please read through this instruction manual carefully in order to use this product correctly and safely.

After reading, keep this instruction manual handy so that you can refer to, whenever you need it.

Toshiba Teli Corporation

Information contained in this document is subject to change without prior notice. Standard name might be trade mark of each company.

Contents

Safety Precautions	2
General Handing	3
RESTRICTION FOR USE	6
Notes on using this product	7
Installation	11
Specifications	. 12
Overview	. 12
Features	12
Configuration	14
Connection	15
Connector Pin Assignment	16
Outline Drawing	17
General Specifications	18
I ED Status	21
LLD Status	
Timing Specification	
Timing Specification	
Typical Specifial Response	20
Operating Ambient Conditions	30
Functions	32
Bootstrap Registers	34
DeviceControl	36
ImageFormatControl	37
Scalable	41
Binning	46
Decimation	50
Reverse	54
PixelFormat	57
TestPattern	63
AcquisitionControl	67
ImageBuffer	73
TriggerControl	78
ExposureTime	88
DigitalIOControl	91
AntiGlitch / AntiChattering	101
TimerControl	105
Gain	110
BlackLevel	113
Gamma	115
BalanceRatio	117
LUTControl	122
UserSetControl	125
EventControl	130
FrameSynchronization	133
LEDIndicatorLuminance	135
DPCControl	137
Chunk	140
SequentialShutterControl	146
Appendix	151
UserSetSave and UserSetQuickSave difference	151
MultiFrame and Bulk function difference	153
Warranty rules	156
Ponoir	150
перан	10/

Safety Precautions

Before using this product, read these safety precautions carefully. Important information is shown in this Instruction Manual to protect users from bodily injuries and property damages, and to enable them to use the product safely and correctly.

Please be sure to thoroughly understand the meanings of the following signs and symbols before reading the main text that follow, and observe the instructions given herein.

[Definition of Safety Signs]

Safety Signs	Description
	Indicates a potentially hazardous situation that may result in death or serious injury (*1) in the event of improper handling.
	Indicates a potentially hazardous situation that may result in light to moderate injuries (*2) or only in property damage (*3)in the event of improper handling.

- Notes *1:"Serious injury" refers to cases of loss of eyesight, wounds, burns (high or low temperature), electric shock, broken bones, poisoning, etc., which leave after-effects or which require hospitalization or a long period of outpatient treatment of cure.
 - *2: "Light to moderate injuries" refers to injuries, burns, electric shock etc. that do not require hospitalization or long-term treatment.
 - *3: "Property damage" refers to cases of extensive damage involving damage to buildings, equipment, farm animals, pet animals and other belongings.

[Explanation of Safety Symbols]

Safety Symbols		Description		
		This sign indicates PROHIBITION (Do not). The content of prohibition is shown by a picture or words beside the symbol.		
	MANDATORY	This sign indicates MANDATORY ACTION (You are required to do). The content of action is shown by a picture or words beside the symbol.		

General Handing

Unplug	 Stop operation immediately when any abnormality or defect occurs. If abnormal conditions are present, such as smoke, a burning smell, ingress of water or foreign matter, or if the equipment is dropped or malfunctions, fire or electric shock may result. Be always sure to disconnect the power cable from the wall socket at once and contact your dealer.
Do not get wet	 Do not use the equipment in locations subject to water splashes. Otherwise, fire or electric shock may result.
Never pull apart	• Do not disassemble, repair, or modify the equipment. Otherwise, fire or electric shock may result. For internal repair, inspection, or cleaning, contact your sales representative.
Avoid	 Do not place anything on the equipment. If metallic objects, liquid, or other foreign matter enters the equipment, fire or electric shock may result.
Avoid	• Do not install the equipment in an unstable or inclined location or locations subject to vibration or impact. Otherwise, the equipment may topple over and cause personal injury.
Do not touch	• During an electrical storm, do not touch the power cable and the connection cable. Otherwise, an electric shock may result.
Instruction	 Use the specified voltage. Use of an unspecified voltage may result in fire or electric shock.
Avoid	 Do not be handled roughly, damaged, fabricated, bent forcefully, pulled, twisted, bundled, placed under heavy objects or heated the power cable and the connection cable. Otherwise, fire or electric shock may result.

Copyright © 2020 Toshiba Teli Corporation, All rights reserved.

Instruction	 Observe the following when installing the equipment: Do not cover the equipment with a cloth, etc. Do not place the equipment in a narrow location where heat is likely to accumulate. Otherwise, heat will accumulate inside the equipment, possibly resulting in a fire. 			
Avoid	 Do not place the equipment in locations subject to high moisture, oil fumes, steam, or dust. Otherwise, fire or electric shock may result. 			
Avoid	• Do not install the equipment in locations exposed to direct sunlight or humidity. Otherwise, the internal temperature of the equipment will rise, which may cause a fire.			
Instruction	• Use only specified the power cable and the connection cables. Otherwise, fire or electric shock may result.			
Avoid	• Do not give strong impact against the equipment. It may cause the trouble.			
Instruction	 When performing connection, turn off power. When connecting the power cable and the connection cable, turn off the equipment power. Otherwise, fire or electric shock may result. 			
Avoid	 Do not expose its camera head to any intensive light (such as direct sunlight). Otherwise, its inner image pickup device might get damaged. 			
Avoid	• Avoid short-circuiting signal output. Otherwise, a malfunction may occur.			
Avoid	• Avoid giving a strong shock against the camera body. It might cause a breakdown or damage. If your camera is used in a system where its connector is subjected to strong repetitive shocks, its connector is possible to break down. If you intend to use your camera in such a situation, if possible, bundle and fix a cable in the place near the camera, and do not transmit a shock to the connector.			
Instruction	 Contact your sales representative to request periodic inspection and cleaning (every approx five years). Accumulation of dust inside the equipment may result in fire or electric shock. For inspection and cleaning costs, contact your sales representative. 			

CASES FOR INDEMNITY (LIMITED WARRANTY)

We shall be exempted from taking responsibility and held harmless for damage or losses incurred by the user in the following cases.

- In the case damage or losses are caused by natural disasters, such as an earthquake and thunder, fire, or other acts of God, acts by a third party, deliberate or accidental misuse by the user, or use under extreme operating conditions.
- In the case of indirect, additional, consequential damages (loss of business interests, suspension of business activities) are incurred as result of malfunction or non-function of the equipment, we shall be exempted from responsibility for such damages.
- In the case damage or losses are caused by failure to observe the information contained in the instructions in this instruction manual and specifications.
- In the case damage or losses are caused by use contrary to the instructions in this instruction manual and specifications.
- In the case damage or losses are caused by malfunction or other problems resulting from unintended use of equipment or software etc. that are not specified.
- In the case damage or losses are caused by repair or modification conducted by the customer or any unauthorized third party (such as an unauthorized service representative).
- Expenses we bear on this product shall be limited to the individual price of the product.
- The item that is not described in specifications of this product is out of the guarantee.
- The case of damages or losses which are caused by incorrect connection of the cable is out of the guarantee.

RESTRICTION FOR USE

- Should the equipment be used in the following conditions or environments, give consideration to safety measures and inform us of such usage:
 - 1. Use of the equipment in the conditions or environment contrary to those specified, or use outdoors.
 - 2. Use of the equipment in applications expected to cause potential hazard to people or property, which require special safety measures to be adopted.
- This product can be used under diverse operating conditions. Determination of applicability of equipment or devices concerned shall be determined after analysis or testing as necessary by the designer of such equipment or devices, or personnel related to the specifications. Such designer or personnel shall assure the performance and safety of the equipment or devices.
- This product is not designed or manufactured to be used for control of equipment directly concerned with human life (*1) or equipment relating to maintenance of public services/functions involving factors of safety (*2). Therefore, the product shall not be used for such applications.
 - (*1): Equipment directly concerned with human life refers to.
 - Medical equipment such as life-support systems, equipment for operating theaters.
 - Exhaust control equipment for exhaust gases such as toxic fumes or smoke.
 - Equipment mandatory to be installed by various laws and regulations such as the Fire Act or Building Standard Law
 - Equipment related to the above
 - (*2): Equipment relating to maintenance of public services/functions involving factors of safety refers to.
 - Traffic control systems for air transportation, railways, roads, or marine transportation
 - Equipment for nuclear power generation
 - Equipment related to the above

Notes on using this product

• Handle carefully

Do not drop the equipment or allow it to be subject to strong impact or vibration, as such action may cause malfunctions. Further, do not damage the connection cable, since this may cause wire breakage.

• Environmental operating conditions

Do not use the product in locations where the ambient temperature or humidity exceeds the specifications. Otherwise, image quality may be degraded or internal components may be adversely affected. In particular, do not use the product in areas exposed to direct sunlight. Moreover, during shooting under high temperatures, vertical stripes or white spots (noise) may be produced, depending on the subject or camera conditions (such as increased gain). However, such phenomena are not malfunctions.

Check a combination with the lens

Depending on the lens and lighting you use, an image is reflected as a ghost in the imaging area. However, this is not because of a fault of the camera.

In addition, depending on the lens you use, the performance of the camera may not be brought out fully due to deterioration in resolution and brightness in the peripheral area, aberration and others.

Be sure to check a combination with the camera by using the lens and lightning you actually use.

When installing a lens in the camera, make sure carefully that it is not tilted.

In addition, use a mounting screw free from defects and dirt. Otherwise, the camera may be unable to be removed.

Install a next lens; its dimension of protrusion from bottom of the screw is equal to or less than 9 mm. If a lens does not stand to this condition, it might not be installed to this camera.

Mounting to pedestal

When mounting this product to a pedestal, make sure carefully that lens doesn't touch with the pedestal.

- Do not expose the camera's image-pickup-plane to sunlight or other intense light directly Its inner CMOS sensor might be damaged.
- Occurrence of moiré

If you shoot thin stripe patterns, moiré patterns (interference fringes) may appear. This is not a malfunction.

• Occurrence of noise on the screen

If an intense magnetic or electromagnetic field is generated near the camera or connection cable, noise may be generated on the screen. If this occurs, move the camera or the cable.

- Handling of the protective cap
 If the camera is not in use, attach the lens cap to the camera to protect the image pickup surface.
- If the equipment is not to be used for a long duration Turn off power to the camera for safety.
- Maintenance

Turn off power to the equipment and wipe it with a dry cloth.

If it becomes severely contaminated, gently wipe the affected areas with a soft cloth dampened with diluted neutral detergent. Never use alcohol, benzene, thinner, or other chemicals because such chemicals may damage or discolor the paint and indications.

If the image pickup surface becomes dusty, contaminated, or scratched, consult your sales representative.

Disposal

When disposing of the camera, it may be necessary to disassemble it into separate parts, in accordance with the laws and regulations of your country and/or municipality concerning environmental contamination.

Following information is only for EU-member states:

The use of the symbol indicates that this product may not be treated as household waste. By ensuring this product is disposed of correctly, you will help prevent potential negative consequences for the environment and human health, which could otherwise be caused by inappropriate waste handling of this product. For more detailed information about the take-back and recycling of this product, please contact your supplier where you purchased the product.

"This symbol is applicable for EU member states only"

This equipment has been tested and found to comply with the limits for a class A digital device, pursuant to Part 15 of the FCC Rules.

These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communication.

Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

[Phenomena specific to CMOS sensor]

• Defective pixels

A CMOS image sensor is composed of photo sensor pixels in a square grid array. Due to the characteristics of CMOS image sensors, over- or under-driving of the pixels results in temporary white or black areas (as if these are noises) appearing on the screen. This phenomenon which is not a defect is exacerbated under higher temperatures and long exposure time.

• Image shading

The brightness of the upper part of the screen may be different from that of the lower part. Note that this is a characteristic of a CMOS image sensor and is not a fault.

	环保使用期限标识,是根据电子信息产品污染控制管理办法以及,电子 信息产品污染控制标识要求(SJ/T11364-2014)、电子信息产品环保使用 期限通则,制定的适用于中国境内销售的电子信息产品的标识。 电子信息产品只要按照安全及使用说明内容,正常使用情况下,从生产
U	月期算起,在此期限内,产品中含有的有毒有害物质不致发生外泄或突变,不致对环境造成严重污染或对其人身、财产造成严重损害。
中华人民共和国	产品正常使用后,要废弃在环保使用年限内或者刚到年限的产品时,请 根据国家标准采取适当的方法进行处置。 另外,此期限不同于质量/功能的保证期限。
小体使用旁喉	The Mark and Information are applicable for People's Republic of China only.

<产品中有毒有害物质或元素的名称及含量>

	有毒有害物质或元素					
部件名称	紀 (DL)	壬 (Ug)	絙 (CI)	六价铬	多溴联苯	多溴二苯醚
		JK (ng)	·辋(Uu)	(Cr(VI))	(PBB)	(PBDE)
相机本体	Х	0	0	0	0	0
本表格依据SJ/T 11364的规定编制						
O: 表示该有毒有害物质在该部件所有均质材料中的含量均在电子信息产品中有毒有害物质的						
限量要求标准规定的限量要求(GB/T26572)以下						
×: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出电子信息产品中有毒有害						

物质的限量要求标准规定的限量要求(GB/T26572)

This information is applicable for People's Republic of China only.

リサイクルに関する情報(包装物) 有关再利用的信息(包装物)

Information on recycling of wrapping composition

Installation

Before using this product, you shall install application software to display image and control registers of camera, and IP configuration tool for network setting.

You can download the SDK for our USB camera products (TeliCamSDK) from the Service & Support section of our website.

User registration is necessary to use downloading service. Please make a user registration, or contact your sales representative.

- Toshiba Teli Corporation Top Page
 <u>http://www.toshiba-teli.co.jp/en/</u>
- Service & Support https://www.toshiba-teli.co.jp/cgi/ss/en/service.cgi

Please refer to the TeliCamSDK startup guide, about Operation environment, Installation, and Setup.

Specifications

<u>Overview</u>

BU2409M series is an integrated-(one-body)-type camera that adopts a global shutter CMOS sensor (24M type 1.2). Suffix [C] are attached to the color models. For video output and camera control, the USB 3.1 Gen1 (USB3.0) interface standard is adopted for high transfer rate, and it is easy to integrate into industrial equipment.

Features

High frame rate

Supporting high frame rate, BU2409MG 15fps (Mono8), BU2409MCG/MCF 15fps (Bayer8).

Global shutter

As it employs a global electronic shutter similar to a CCD image sensor, clear images of even fast-moving object are obtainable with less blur.

• USB3.1 Gen1 (USB3.0) interface

Video output and camera control are performed via the USB 3.1 Gen1 (USB3.0, after here USB3.1 Gen1) standard interface. Data transfer is up to 5Gbps (Maximum) that enables to output uncompressed video data at high frame rate.

USB3 Vision

This product is based on USB3 Vision Ver.1.0.

- GenICam Ver.2.4 and Ver.3.0
 This product is based on GenICam Generic Interface for Cameras Ver.2.4 and Ver.3.0.
- IIDC2 Digital Camera Control Specification Ver.1.1.0
 This product is based on IIDC2 Digital Camera Control Specification Ver.1.1.0.

• e-CON Connector adoption

The e-CON connector adoption enables to assemble the cable easily without using special tools.

• Random Trigger Shutter

The Random Trigger Shutter function provides images in any timing by input of an external trigger signal. Trigger control from PC is available as well.

Scalable

Selectable video output area. This mode achieves higher frame rate by reducing vertical output area. And reduces occupied data rate of USB bus by reducing horizontal output area.

Binning

Pixel data is combined by vertical and horizontal. It achieves high frame rate.

Decimation

Camera reads all effective areas at high speed by skipping lines.

Dust-proof Glass

Dust-proof Glass is built in default.

Suffix [G] is attached to the model name of built-in Glass.

IR-cut filter

Build-in IR-cut filter models are optional for color models. Suffix [F] is attached to the model name of built-in IR-cut filter model.

• Compact and lightweight

This camera is compact and lightweight; it is easy to integrate into industrial equipment.

Configuration

The system configuration of this camera series is as follows; This camera has no accessories, please prepare other equipment separately.

• Camera:	This product.
 Camera mounting kit CPTBU, CPTBUBG (*1): 	To fix a camera to a tripod; attach this to the bottom of the camera.
• USB3.1 Gen1 Cable (*2):	This cable is used to connect the camera to host PC. Please use a USB3.1 Gen1 cable of Standard A - Micro B. This product is able to connect a USB cable equipped with screw lock mechanism. Please use it as needed.
 USB3.1 Gen1 Interface Card (*2): 	This is the interface card to connect to the camera. Usually this card is installed to expansion slot of PC etc.
• e-CON Cable. (*2):	This cable is used to input external trigger signal and output GPIO signal.
	We recommend using shielded cable, because there is likely to be affected by the noise depending on the operating environment of the camera.

*1: Optional part. Contact your sales representative for details of option units.

*2: Commercial items.

Connection

Notes on Connection:

- Please confirm the power supply of the camera off when plugging in or pulling out the I/O Connector. It causes the breakdown.
- If your camera is used in a system where its connectors are subjected to strong repetitive shocks, its connectors are possible to break down. If you use your camera in such a situation, use an USB3.0 cable with a lock screw, and secure the camera cable as close as possible to the camera body for avoid physical shock to the camera connector.
- About e-CON cable: In the case that electric-wire is long or thin, input and output voltage may not satisfy specifications of the camera or your system by voltage drop. Please confirm wires' specifications before use them.
- Lost packets may occur by an electrical characteristic of the transmission line of USB3.1 Gen1. (USB3.1 Gen1 Interface Card, USB3.1 Gen1 Cable, and USB3.1 Gen1 HUB).

Connector Pin Assignment

1. USB3.1 Gen1 Interface Connector						
	Connector model: WMUR-10F6L1PH5N (WIN WIN PRECISION INDUSTRIAL)					
	Pin No.	I/O	Signal	Function		
	1	-	VBUS	Power		
	2	I/O	D-	LISB2 0 differential pair		
	3	I/O	D+			
	4	-	NC	Not connected		
	5	-	GND	Ground for power return		
	6	0	SSTX-			
	7	0	SSTX+	SuperSpeed transmitter differential pair		
	8	-	GND_DRAIN	Ground for SuperSpeed signal return		
	9	I	SSRX-	SuperSpeed receiver differential pair		
	10	Ι	SSRX+	SuperSpeed receiver differential pair		
2. I/O Connector S7204-62B3-004PL (3M Japan Limited) or equivalent Connectors which conformed to e-CON e.g. 37104 series (3M Japan Limited), RITS 4P series (TE Connectivity Ltd) * Matching connector is not an accessory of this product. Pin assignment ① ② ↑ TOP ③ ④ * Above figure is connector view from insert side						
		Signal	Function			
	1	., c I/O	Line2	GPIQ Input / Output		
	2	0	Line1	GPIQ Output		
	<u>-</u>			Ground		
	3	-	GND	Gibuna		

Line0

I

4

GPIO Input

Outline Drawing

Specification Main material : Aluminum die-cast metal Processing : Cation coating (black)

General Specifications

• B/W model

Model Name	BU2409MG	
Optical part	Optical glass	
Imager	CMOS image sensor	
Number of Video out pixels (H) × (V)	5328 x 4608	
Optical Size	type1.2	
Scanning area (H) × (V)[mm]	14.60 x 12.63	
Pixel size (H) × (V)[µm]	2.74 ×2.74	
Scan method	Progressive	
Electronic shutter method	Global shutter	
Aspect ratio	7:6	
Sensitivity 1950lx, F11, 1/20s		
Minimum illuminance	1lx (F1.4, Gain +36dB, Video Level 50%)	
Power supply	DC +5V±5% (from USB connector)	
Power consumption (*1)	3.3W (maximum)	
Interface	USB 3.1 Gen1 (Only SuperSpeed is supported)	
Transmission speed 5Gbps (maximum)		
Protocol	USB3 Vision	
Image format	Mono8, Mono10, Mono12	
Maximum Frame rate (*2)		
Mono8	15 fps	
Mono10, Mono12	8 fps	
Dimensions	29 mm(W) x 29 mm (H) x 16 mm (D) (Not including protrusion)	
Mass	33 g	
Lens mount	C-mount	
Flange back	17.526mm	
Camera body grounding: insulation status	Conductive between circuit GND and camera body	

*1, *2 at the all pixel readout

• Color model

Model Name	BU2409MCG	BU2409MCF	
Optical Part	Optical glass IR cut filter		
Imager CMOS image sensor		age sensor	
Number of Video out pixels (H) \times (V)	5328	x 4608	
Optical Size	Тур	e 1.2	
Scanning area (H) × (V)[mm]	14.60	x 12.63	
Pixel size (H) × (V)[µm]	2.74	× 2.74	
Scan method	Prog	ressive	
Electronic shutter method	Globa	l shutter	
Aspect ratio	7	: 6	
Sensitivity	1850lx, F8, 1/20s	2000lx, F8, 1/20s	
Minimum illuminance	1lx (F1.4, Gain +36	dB, Video Level 50%)	
Power supply DC +5V±5% (from USB connector)		m USB connector)	
Power consumption (*1)	3.3W (maximum)		
Interface	USB 3.1 Gen1 (Only SuperSpeed is supported)		
Transmission speed 5Gbps (maximum)		maximum)	
Protocol USB3 Vision		3 Vision	
Image format	Bayer8, Bayer10, Bayer12		
Maximum Frame rate (*2)			
Bayer8, Mono8	15 fps		
Bayer10, Bayer12	8 fps		
Dimensions	29 mm(W) x 29 mm (H) x 16 mm (D) (Not including protrusion)		
Mass	33 g		
Lens mount	C-mount		
Flange back	17.526mm		
Camera body grounding: insulation status	Conductive between circuit GND and camera body		

*1, *2 at the all pixel readout

Notes on combination of C-mount lens:

- Depending on the lens you use, the performance of the camera may not be brought out fully due to the deterioration in resolution and brightness in the peripheral area, occurrence of a ghost, aberration and others. When you check the combination between the lens and camera, be sure to use the lens you actually use.
- In addition, use a mounting screw free from defects and dirt. Otherwise, the camera may be unable to be removed.
- As for the C-mount lens used combining this camera, the projection distance from bottom of the screw should use 9mm or less.

Notes on Dropping Frames:

Depends on your PC and USB3.0 interface card configurations, images may not be captured properly (e.g. dropping frames). In this case, change frame rate setting lower.

LED Status

Camera state	Lamp indication
No power	Off
Link detection in progress	Fast flash green (ON:20ms, OFF:60ms)
Connection Error	Flash alternate red / green
SuperSpeed connected, but no data being transferred	Flash green (ON: 200ms, OFF: 800ms)
SuperSpeed connected, waiting for trigger	Flash orange (ON: 200ms, OFF: 800ms)
HighSpeed connected, but no data being transferred	Slow flash green (ON: 400ms, OFF: 1600ms)
HighSpeed connected, waiting for trigger	Slow flash orange (ON: 400ms, OFF: 1600ms)
Data being transferred	Fast flash green (ON:60ms, OFF:20ms)
Error during data transfer	Solid Red (Time period: 500ms)
Stand-by	Super slow flash orange (ON:200ms, OFF: 2800ms)

I/O Specification

Signal Specification

Line0	(GPIO In	put, I/O	connector:	4	pin)
-------	----------	----------	------------	---	------

Input / Output Specification	: Input only
Input Circuit	: LVTTL
Level	: Low 0 ~ 0.5V, High 2.0 ~ 24.0V
Polarity	: High active / Low active (initial factory setting: Low active)
Pulse Width	: Minimum 50µs
Input circuit diagram	

Notes of external trigger signal:

Depending on cable length, cable kinds and input current of trigger input line, Random Trigger Shutter operation may not satisfy timing specification or camera may not receive EXT_TRIG signal. Please confirm it before use.

Notes of input level:

Line0 and Line2 have different input level. Please use input level within the voltage described in this specification.

- External trigger input recommended circuit
 - Isolated I/F

- Non-Isolated I/F

Notes of trigger input cable:

- The recognition of the trigger signal depends on the length, characteristic or driving current of the cable. Therefore please confirm your system about those conditions.
- Pin 3 is conducted with camera frame.
- Using shield cable, terminal processing of the shield is referred as above.
- Please confirm the EMC adaptability in whole of your system.

- Line2 (GPIO Input / Output, initial factory setting: Input, I/O connector: 1 pin)

Input / Output specification	: Input / Output (switch by LineMode is possible)
Factory setting	: Output

Input signal specification	
Level	: Low 0 ~ 0.5V, High 4.0 ~ 5.0V
Polarity	: High active / Low active (initial factory setting: Low active)
Pulse Width	: Minimum 50µs

Notes of external trigger signal:

Depending on cable length, cable kinds and input current of trigger input line, Random Trigger Shutter operation may not satisfy timing specification or camera may not receive EXT_TRIG signal. Please confirm it before use.

Notes of input level:

Line0 and Line2 have different input level. Please use input level within the voltage described in this specification.

- Output signal specification

Output Circuit	: 5V CMOS
Maximum Currei	nt: +/-32mA
Polarity	: High active / Low active (initial factory setting: Low active)
Signal Source	: Off* / UserOutput / Timer0Active / AcquisitionActive
	FrameTriggerWait / FrameActive / FrameTransferActive
	ExposureActive

*Even if LineMode is set as Output, the input signal to Line2 is valid when LineSource is set as Off.

Input / Output circuit diagram

- Line1 (GPIO Output, I/O connector: 2 pin)

Input / Output Specification	: Output only
Output Circuit	: 5V CMOS
Maximum Current	: +/-32mA
Polarity	: High active / Low active (initial factory setting: Low active)
Signal Source	: Off / UserOutput / Timer0Active / AcquisitionActive
	FrameTriggerWait / FrameActive / FrameTransferActive
	ExposureActive

Timing Specification

Image data outputs are transferred with USB bulk transfer. Timing numerical value below is described by absolute prerequisite that camera can use transmission band without restriction of other device. When there is other device on the same bus, the value described below is not guaranteed.

• In Manual Shutter mode

Madal Nama	format	T1	T2	Т3	
Model Name	iomat	[ms]	[ms]	[s]	
PU2400MC	Mono8	64.0	64.0		
BOZ409MG	Mono10, Mono12	67.4	124.1	1/(Fromo Boto potting)	
	Bayer8	64.0	64.0	I/(Frame Rate Setting)	
B02409MCG/CF	Bayer10, Bayer12	67.4	124.1		

• In Random Trigger Shutter mode

Edge mode / Bulk mode (at all pixels readout)

Level mode (at all pixels readout)

Madal Nama	format	T4	T5
woder name	Iomat	[µs]	[µs]
BU2400MC	Mono8	121.7	124.1
B02409MG	Mono10, Mono12	99.7	102.1
	Bayer8	121.7	124.1
BU2409MCG/CF	Bayer10, Bayer12	99.7	102.1

* The value of T2 is the same as the value of normal shutter mode.

* T4 and T5 are typical value.

Notes of random trigger shutter mode:

- In the period when Frame_Trigger_Wait (GPIO signal) is inactive, user must not input external trigger signal to this camera.
- When the interval of the input trigger signal is extremely short, or when the trigger signal is noisy, there is a possibility of causing the malfunction. In this case, please input a proper trigger signal.

Typical Spectral Response

* The lens characteristics and light source characteristics is not reflected in table.

• BU2409MG

•BU2409MCG

•BU2409MCF

Operating Ambient Conditions

Ambient conditions

- Operating Assurance	
Temperature:	0°C to +40°C, Camera housing temperature: less than 60 °C
Humidity:	10% to 90% (no condensation)
- Storage Assurance	
Temperature:	-20°C to +60°C

90% or less (no condensation)

Notes on Heat Radiation:

Humidity:

The temperature of camera housing must be kept less than 60 °C.

However, about the upper limit of top surface temperature of camera housing and the allowed ambient temperature of

each model, please refer to the "Thermal design manual" on our HP.

- EMC Conditions
 - EMI (Electro-Magnetic Interference):

EN61000-6-4 FCC Part 15 Subpart B Class A EN61000-6-2

- EMS (Electro-Magnetic Susceptibility): EN

Functions

This section introduces standard functions. BU2409M series provides following functions.

Category	Function	
USB3 Vision	Bootstrap Registers	USB3 Vision standard registers
DeviceControl	DeviceControl	Device information
ImageFormatControl	ImageFormatSelector	Image format selection
	Scalable	Scalable control
	Binning	Binning control
	Decimation	Decimation control
	Reverse	Image flip
	PixelFormat	Pixel format selection
	TestPattern	Test pattern control
AcquisitionControl	AcquisitionControl	Image stream start / stop
	ImageBuffer	Image buffer control
	TriggerControl	Trigger control
	ExposureControl	Exposure time control
DigitalIOControl	DigitallOControl	GPIO signal control
	AntiGlitch	AntiGlitch control
	AntiChattering	AntiChattering control
CounterAndTimerControl	TimerControl	Timer0Active signal control
AnalogControl	Gain	Gain control
	BlackLevel	Black level control
	Gamma	Gamma correction
	BalanceRatio	Color gain (R, B)
	BalanceWhiteAuto	Execute auto white balance once
LUTControl	LUTControl	LUT control
UserSetControl	UserSetControl	Load / Save user setting
EventControl	EventControl	Event packet control
VenderUniqueControl	FrameSynchronization	Frame synchronization control
	LEDIndicatorLuminance	LED luminance control
DPCControl	DPCControl	Defect pixel correction control
SequentialShutterControl	SequentialShutterControl	Sequential shutter control
ChunkDataControl	Chunk	ChunkDataControl

Features supported by each model are as follows.

Function	BU2409MG	BU2409MCG	BU2409MCF
Bootstrap Registers	1	1	1
DeviceControl	1	1	1
ImageFormatSelector	1	1	1
Scalable	1	1	1
Binning	1	1	1
Decimation	1	1	1
Reverse	1	1	1
PixelFormat	1	1	1
TestPattern	1	1	1
AcquisitionControl	1	1	1
ImageBuffer	1	✓	✓
TriggerControl	1	1	1
ExposureControl	1	1	1
DigitalIOControl	1	1	1
TimerControl	1	1	1
Gain	1	1	s second
BlackLevel	1	1	1
Gamma	1	1	s second
BalanceRatio	-	1	1
BalanceWhiteAuto	-	1	1
LUTControl	1	1	1
UserSetControl	1	1	s second
EventControl	1	1	1
FrameSynchronization	1	1	s second
LEDIndicatorLuminance	1	1	s second
AntiGlitch	1	1	s second
AntiChattering	1	1	1
DPCControl	1	1	1
SequentialShutterControl	1	1	1
Chunk	1	1	✓

Details of each feature are described in following pages.

Bootstrap Registers

This camera is based on USB3 Vision.

Please refer to USB3 Vision specification for details about Bootstrap Registers defined in USB3 Vision. AIA (Automated Imaging Association) USB3 Vision Homepage.

http://www.visiononline.org/vision-standards-details.cfm?type=11

Followings are commonly used registers.

- UserDefinedName

UserDefinedName is used for assigning unique ID to the camera. You can store an arbitrary string into non-volatile memory.

- StreamEnable

When **StreamEnable** bit is set. Camera starts to send image streaming.

TeliU3vSDK / TeliCamSDK require some setups on your application in opening and closing the stream channel. Please refer to the library manual for details.

- EventEnable

When EventEnable bit is set. Camera is enabled to send event packets.

TeliU3vSDK / TeliCamSDK require some setups on your application in opening and closing the event channel. Please refer to the library manual for details.

• Registers

USB3 Vision ABRM						
Register	Address	GenICam Interface	Length Byte / [bit]	Access	Description	
ManufactureName	0x00004	String	64	R	Manufacturer name	
ModelName	0x00044	String	64	R	Device model name	
FamilyName	0x00084	String	64	R	Device family name	
DeviceVersion	0x000C4	String	64	R	Device version	
ManufacturerInfo	0x00104	String	64	R	Additional manufacturer specific information	
SerialNumber	0x00144	String	64	R	Serial number of the device	
UserDefinedName	0x00184	String	64	R/W	User defined name of the device.	
SBRM Address	0x001D8	Integer	8	R	Start Address of the SBRM	

USB3 Vision SBRM							
Register	Address	GenICam Interface	Length Byte / [bit]	Access	Description		
SIRMAddress	0x10020	Integer	8	R	Start Address of the SIRM		
EIRMAddress	0x1002C	Integer	8	R	Start Address of the EIRM		
IIDC2Address	0x10038	Integer	8	R	Start Address of the IIDC2		
CurrentSpeed	0x10040	Integer	[30]	R	[0]: Low-Speed connection (not supported)		
					[1]: Full-Speed connection (not supported)		
					[2]: High-Speed connection		
					[3]: Super-Speed connection		

USB3 Vision SIRM							
Register	Address	GenICam Interface	Length Byte / [bit]	Access	Description		
StreamEnable	0x20004	Integer	[0]	R/W	0: Disable data transfer of the streaming		
					1: Enable data transfer of the streaming		
SIRequiredPayloadSize	0x20008	Integer	8	R	Minimum required payload size with current settings		
SIRequiredLeaderSize	0x20010	Integer	4	R	Minimum required leader size		
SIRequiredTrailerSize	0x20014	Integer	4	R	Minimum required trailer size		
SIMaximumLeaderSize	0x20018	Integer	4	R	Maximum leader size		
SIPayloadTransferSize	0x2001C	Integer	4	R	Expected Size of a single Payload Transfer		
SIPayloadTransferCount	0x20020	Integer	4	R	Expected Number of Payload Transfers		
SIPayloadFinalTransfer1Size	0x20024	Integer	4	R	Size of first final Payload transfer		
SIPayloadFinalTransfer2Size	0x20028	Integer	4	R	Size of second final Payload transfer		
SIMaximumTrailerSize	0x2002C	Integer	4	R	Maximum trailer size		

USB3 Vision EIRM								
Register	Address	GenICam Interface	Length Byte / [bit]	Access	Description			
EventEnable	0x30000	Integer	[0]	R/W	0: Disable data transfer of the event			
					1: Enable data transfer of the event			

• Note

BU series doesn't support image transfer in High-Speed connection.

CurrentSpeed register could be used for showing the warning message on your application when camera is connected to USB2.0 port.
DeviceControl

Registers of this category provide various information of the camera.

• Registers

Register	Address	GenICam Interface	Length Byte / [bit]	Access	Description
DeviceReset	0x20003C	Command	[0]	W	[1] Resets the device.
DeviceVendorName	0x200070	String	16	R	Same as ManufactureName in Bootstrap Registers
DeviceModelName	0x200090	String	16	R	Same as ModelName in Bootstrap Registers
DeviceManufactureInfo	0x2000B0	String	16	R	Same as ManufacturerInfo in Bootstrap Registers
DeviceVersion	0x2000D0	String	16	R	Same as DeviceVersion in Bootstrap Registers
DeviceID	0x200110	String	16	R	Same as SerialNumber in Bootstrap Registers

Note

DeviceReset

Camera executes the USB Bus reset operation by DeviceReset command.

- Plug-and-play happens, camera handles used in the application become invalid.

- The application is required to close and re-open the camera.

ImageFormatControl

Registers of this category are related to image format control.

Camera has three different banks of image format. You can select image format by ImageFormatSelector.

		-ormat2	
	Format1	ĺ	Width
Format0		Width	leight
ImageSize	Width Height	Height DffsetX	DffsetX DffsetY
inagooizo	OffsetX OffsetY	Dπset Y rizontal	rizontal ertical
Binning	BinningHorizontal BinningVertical		lorizontal
Binnir			Vertical
Decimati	onHorizontal	Vertical	seX
Decima	tionVertical	seX	seY
Re	ReverseX		rmat
Re	ReverseY		dian
Pixe Pixe	PixelFormat PixelEndian		

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
ImageFormatSelector	IEnumeration	4	R/W	Selects an image format.

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
ImageFormatSelector	Implemented	0x202020	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20202C	16	R	[0] : Format0
					[1] : Format1
					[2] : Format2
	Value	0x20203C	4	R/W	Selects an image format.

List of registers to be applied by ImageFormatSelector

ImageFormat 0 - 2
Width
Height
OffsetX
OffsetY
BinningHorizontal
BinningVertical
DecimationHorizontal
DecimationVertical
ReverseX
ReverseY
PixelFormat
PixelEndian

• Control with TeliCamSDK

Camera feature API

Control ImageFormat using dedicated API.

API name	Description
GetCamImageFormatSelector	Get current ImageFormatSelector value
SetCamImageFormatSelector	Set new ImageFormatSelector value

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control ImageFormat using GenICam API.

ImageFormat

Select an image format by 'ImageFormatSelector'.

Integer value and string value of Enumeration are as follows.

Integer	String
0(*)	Format0
1	Format1
2	Format2

* initial factory setting

```
// GenICam node handle
CAM_NODE_HANDLE hSelector = NULL;
// Retrieve GenICam node.
Nd_GetNode(s_hCam, "ImageFormatSelector", &hSelector);
// ImageFormat = Format2
Nd_SetEnumStrValue(s_hCam, hSelector, "Format2");
```

Please refer to [INode functions], [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Control Gain by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

ImageFormat

Write to 'Value' field of 'ImageFormatSelector' register.

// ImageFormat = Format2 uint32_t uiSelector; uiSelector = 2; Cam_WriteReg(s_hCam, 0x20203C, 1, &uiSelector);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Note

Changing 'ImageFormatSelector' register value is invalid during image stream data output.

<u>Scalable</u>

Scalable function reads out the region of interest (ROI) of the sensor.

If height size is set small, it is possible to increase the frame rate.

Only single rectangle is selectable. Concave or convex shape is not selectable.

- Window size: ${A + 4 \times m (H)} \times {B + 8 \times n (V)}$

A, B = minimum unit size

m, n = integer

The window size is equal or less than maximum image size.

- Start address: {4 x i (H)} x {8 x j (V)}
 - i, j = integer

The window size is equal or less than maximum image size.

Scalable

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
Width	IInteger	4	R/W	Sets width (in pixels) of the image data.
Height	IInteger	4	R/W	Sets Height (in pixels) of the image data.
OffsetX	IInteger	4	R/W	Sets horizontal offset (in pixels) from the origin to the region of interest.
OffsetY	IInteger	4	R/W	Sets vertical offset (in pixels) from the origin to the region of interest.

Register	Field	Address	Length Byte / [bit]	Access	Description
ImageSize	Implemented	0x202060	[31]	R	Returns the state whether the function is implemented.
	OffsetXMin	0x20206C	4	R	Returns the minimum starting position of the horizontal direction
	OffsetXInc	0x202070	4	R	Returns the unit starting position of the horizontal direction
	WidthMin	0x202074	4	R	Returns the minimum size of width
	WidthInc	0x202078	4	R	Returns the unit size of width
	SensorWidth	0x20207C	4	R	Returns effective width of the sensor in pixels
	OffsetYMin	0x202080	4	R	Returns the minimum starting position of the vertical direction
	OffsetYInc	0x202084	4	R	Returns the unit starting position of the vertical direction
	HeightMin	0x202088	4	R	Returns the minimum size of height
	HeightInc	0x20208C	4	R	Returns the unit size of height.
	SensorHeight	0x202090	4	R	Returns effective Height of the sensor in pixels
	OffsetX	0x202094	4	RW	Sets horizontal offset (in pixels) from the origin to the region of interest
	Width	0x202098	4	RW	Sets width (in pixels) of the image data.
	OffsetY	0x20209C	4	RW	Sets vertical offset (in pixels) from the origin to the region of interest
	Height	0x2020A0	4	RW	Sets Height (in pixels) of the image data.

Control with TeliCamSDK

Camera feature API

Control Scalable using dedicated API.

API name	Description
GetCamSensorWidth	Get effective width of the sensor in pixels
GetCamSensorHeight	Get effective height of the sensor in pixels
GetCamRoi	Get ROI (Region of Interest) of the camera
SetCamRoi	Set ROI (Region of Interest) to the camera
GetCamWidthMinMax	Get minimum and maximum value
GetCamWidth	Get width of image
SetCamWidth	Set width of image
GetCamHeightMinMax	Get minimum and maximum value
GetCamHeight	Get height of image
SetCamHeight	Set height of image
GetCamOffsetXMinMax	Get minimum and maximum value
GetCamOffsetX	Get horizontal offset of image
SetCamOffsetX	Set horizontal offset of image
GetCamOffsetYMinMax	Get minimum and maximum value
GetCamOffsetY	Get vertical offset of image
SetCamOffsetY	Set vertical offset of image

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control Scalable using GenICam API.

♦ Scalable

// GenICam node handle CAM_NODE_HANDLE hWidth = NULL; CAM_NODE_HANDLE hHeight = NULL; CAM_NODE_HANDLE hOffsetX = NULL; CAM_NODE_HANDLE hOffsetY = NULL; // ROI = {OffsetX, Width, OffsetY, Height}; uint64_t ROI[] = {612,1224, 512,1024}; // Retrieve GenICam node. Nd_GetNode(s_hCam, "Width", &hWidth); Nd_GetNode(s_hCam, "Height", &hHeight); Nd_GetNode(s_hCam, "OffsetX", &hOffsetX); Nd_GetNode(s_hCam, "OffsetY", &hOffsetY); // Set ROI Nd_SetIntValue(s_hCam, hWidth, ROI[1]); Nd_SetIntValue(s_hCam, hOffsetX, ROI[0]); Nd_SetIntValue(s_hCam, hHeight, ROI[3]); Nd_SetIntValue(s_hCam, hOffsetY, ROI[2]);

If you're going to reduce width size, set Width, first. Then set OffsetX.

If you're going to increase width size, set OffsetX, first. Then set Width.

If you're going to reduce height size, set Height, first. Then set OffsetY.

If you're going to increase height size, set OffsetY, first. Then set Height.

Please refer to [INode functions] and [IInteger node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control Scalable by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦ Scalable

Write to 'Value' field of 'OffsetX', 'Width', 'OffsetY', 'Height' register.

```
// ROI = {OffsetX, Width, OffsetY, Height};
uint32_t ROI[] = {612,1224, 512,1024};
// Set ROI (in one by one)
Cam_WriteReg(s_hCam, 0x202094, 1, &ROI[0]);
Cam_WriteReg(s_hCam, 0x202098, 1, &ROI[1]);
Cam_WriteReg(s_hCam, 0x20209C, 1, &ROI[2]);
Cam_WriteReg(s_hCam, 0x2020A0, 1, &ROI[3]);
// Set ROI (in block)
Cam_WriteReg(s_hCam, 0x202094, 4, &ROI[0]);
```

In IIDC2 registers access,

you can set OffsetX, Width, OffsetY, Height in any order. (in one by one access) you can also set OffsetX, Width, OffsetY, Height with single access. (in block access)

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

Model	BU2409MG/MCG/MCF
Width/OffsetX unit size	4
Height/OffsetY unit size	8
Minimum unit size	64 x 64
Maximum unit size(*)	5328 x 4608

* initial factory setting

Note

Changing "Width", "Height", "OffsetX", "OffsetY" register value is invalid during image stream data output.

<u>Binning</u>

In the binning mode, a pixel is added with the neighboring pixel(s).

This increases the sensitivity of the image. It's alike scalable, the frame rate can be faster and USB bandwidth ccupation decrease.

Binning operation

- Framerate in each output format (fps)
 - BU2409MG

Mono	8	н			
		1 2 4			
	1	15	15	15	
V	2	15	60	60	
	4	15	60	60	

- BU2409MCG/CF

Bayer	·8	н		
		1	2	4
	1	15	15	15
V	2	15	15	15
	4	15	15	15

Mono	10	Н		
/Monc	012	1 2 4		
	1	8	14	14
V	2	14	32	53
	4	14	53	53

Bayer	10	н		
/Baye	r12	1 2 4		
	1	8	14	14
V	2	14	14	14
	4	14	14	14

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
BinningHorizontal	IInteger	4	R/W	Sets the Binning Horizontal.
BinningVertical	IInteger	4	R/W	Sets the Binning Vertical.

Register	Field	Address	Length Byte / [bit]	Access	Description
BinningHorizontal	Implemented	0x202120	[31]	R	Returns the state whether the function is implemented.
	Min	0x202134	4	R	Returns the minimum value of BinningHorizontal Value register.
	Max	0x202138	4	R	Returns the maximum value of BinningHorizontal Value register.
	Value	0x20213C	4	R/W	Sets the Binning Horizontal.
BinningVertical	Implemented	0x202140	[31]	R	Returns the state whether the function is implemented.
	Min	0x202154	4	R	Returns the minimum value of BinningVertical Value register.
	Max	0x202158	4	R	Returns the maximum value of BinningVertical Value register.
	Value	0x20215C	4	R/W	Sets the Binning Vertical.

Control with TeliCamSDK

Camera feature API

Control Binning using dedicated API.

API name	Description
GetCamBinningHorizontalMinMax	Get minimum and maximum value
GetCamBinningHorizontal	Get current BinningHorizontal value
SetCamBinningHorizontal	Set new BinningHorizontal value
GetCamBinningVerticalMinMax	Get minimum and maximum value
GetCamBinningVertical	Get current BinningVertical value
SetCamBinningVertical	Set new BinningVertical value

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control Binning using GenICam API.

♦Binning

// GenICam node handle CAM_NODE_HANDLE hBinning = NULL; // Binning = 2x2 uint64_t Binning = 2; // Retrieve GenICam node. Nd_GetNode(s_hCam, "BinningHorizontal", &hBinning); // Nd_GetNode(s_hCam, "BinningVertical", &hBinning); // either will do // Set Binning Nd_SetIntValue(s_hCam, hBinning, Binning);

Please refer to [INode functions], [IInteger node functions] in [TeliCamAPI Library manual] for more detail.

Control Binning by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦ Binning

Write to 'Value' field of 'BinningHorizontal' register to control BinningHorizontal.

Or write to 'Value' field of 'BinningVertical' register to control BinningVertical.

// Binning = 2x2 uint32_t Binning = 2;	
// Set Binning Cam_WriteReg(s_hCam, 0x20213C, 1, &Binning); // Cam_WriteReg(s_hCam, 0x20215C, 1, &Binning); // either will do	

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Note

Binning is disabled when the camera is running in Decimation mode.

Scalable is enabled when the camera is running in Binning mode.

Changing "BinningHorizontal", "BinningVertical" register value is invalid during image stream data output. Binning Horizontal / Vertical = 3 is not available.

Decimation

Decimation feature reads out all effective areas at high speed by skipping pixels and lines. Decimation feature can make frame rate faster, and decrease interface bandwidth occupation.

Decimation operation

- FrameRate in each output format (fps)
 - BU2409MG

Mono	8	н		
		1	2	4
	1	15	15	15
V	2	15	60	60
	4	15	60	60

- BU2409MCG/CF

Bayer	·8	н		
/Mono)	1 2 4		
	1	15	15	15
V	2	15	60	60
	4	15	60	60

Mono10		н				
/Mono12		1	2	4		
1		8	14	14		
V	2	14	32	53		
	4	14	53	53		

Bayer10		н				
/Baye	r12	1	2	4		
1		8	14	14		
V	2	14	32	53		
	4	14	53	53		

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
DecimationHorizontal	IInteger	4	R/W	Sets the Decimation Horizontal.
DecimationVertical	IInteger	4	R/W	Sets the Decimation Vertical.

Register	Field	Address	Length Byte / [bit]	Access	Description
DecimationHorizontal	Implemented	0x202160	[31]	R	Returns the state whether the function is implemented.
	Min	0x202174	4	R	Returns the minimum value of DecimationHorizontal Value register.
	Max	0x202178	4	R	Returns the maximum value of DecimationHorizontal Value register.
	Value	0x20217C	4	R/W	Sets the Decimation Horizontal.
DecimationVertical	Implemented	0x202180	[31]	R	Returns the state whether the function is implemented.
	Min	0x202184	4	R	Returns the minimum value of DecimationVertical Value register.
	Max	0x202188	4	R	Returns the maximum value of DecimationVertical Value register.
	Value	0x20218C	4	R/W	Sets the Decimation Vertical.

Control with TeliCamSDK

Camera feature API

Control Decimation using dedicated API.

API name	Description
GetCamDecimationHorizontalMinMax	Get minimum and maximum value
GetCamDecimationHorizontal	Get current DecimationHorizontal value
SetCamDecimationHorizontal	Set new DecimationHorizontal value
GetCamDecimationVerticalMinMax	Get minimum and maximum value
GetCamDecimationVertical	Get current DecimationVertical value
SetCamDecimationVertical	Set new DecimationVertical value

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control Decimation using GenICam API.

Decimation

```
// GenICam node handle
CAM_NODE_HANDLE hDecimation = NULL;
// Decimation = 2x2
uint64_t Decimation = 2;
// Retrieve GenICam node.
Nd_GetNode(s_hCam, "DecimationHorizontal", &hDecimation);
// Nd_GetNode(s_hCam, "DecimationVertical", &hDecimation); // either will do
// Set Decimation
Nd_SetIntValue(s_hCam, hDecimation, Decimation);
```

Please refer to [INode functions], [IInteger node functions] in [TeliCamAPI Library manual] for more detail.

Control Decimation by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦ Decimation

Write to 'Value' field of 'DecimationHorizontal' register to control DecimationHorizontal.

Or write to 'Value' field of 'DecimationVertical' register to control DecimationVertical.

// Decimation = 2x2 uint32_t Decimation = 2;
// Set Decimation Cam_WriteReg(s_hCam, 0x20213C, 1, &Decimation); // Cam_WriteReg(s_hCam, 0x20215C, 1, &Decimation); // either will do

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Note

Decimation is disabled when the camera is running in Binning mode.

Scalable is enabled when the camera is running in Decimation mode.

Changing "DecimationHorizontal", "DecimationVertical" register value is invalid during image stream data output.

Binning Horizontal / Vertical = 3 is not available.

<u>Reverse</u>

Reverse function flips image in horizontal and/or vertical direction..

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
ReverseX	IBoolean	4	R/W	Sets the Reverse Horizontal.
ReverseY	IBoolean	4	R/W	Sets the Reverse Vertical.

Register	Field	Address	Length Byte / [bit]	Access	Description
ReverseX	Implemented	0x2021A0	[31]	R	Returns the state whether the function is implemented.
	Value	0x2021B0	4	R/W	Sets the Reverse Horizontal. [0] : Off [1] : On
ReverseY	Implemented	0x2021C0	[31]	R	Returns the state whether the function is implemented.
	Value	0x2021D0	4	R/W	Sets the Reverse Vertical. [0] : Off [1] : On

Control with TeliCamSDK

Camera feature API

Control Reverse using dedicated API.

API name	Description
GetCamReverseX	Get current ReverseX value
SetCamReverseX	Set new ReverseX value
GetCamReverseY	Get current ReverseY value
SetCamReverseY	Set new ReverseY value

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control Reverse using GenICam API.

♦Reverse

Sets the Reverse Horizontal by 'ReverseX'.

Sets the Reverse Vertical by 'ReverseY'.

// GenICam node handle CAM_NODE_HANDLE hReverseX = NULL; CAM_NODE_HANDLE hReverseY = NULL; // Retrieve GenICam node. Nd_GetNode(s_hCam, "ReverseX", &hReverseX); Nd_GetNode(s_hCam, "ReverseY", &hReverseY); // Set Reverse (flip horizontal and vertical direction) Nd_SetBoolValue(s_hCam, hReverseX, true); Nd_SetBoolValue(s_hCam, hReverseY, true);

Please refer to [INode functions], [IBoolean node functions] in [TeliCamAPI Library manual] for more detail.

Control Reverse by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦Reverse

Write to 'Value' field of 'ReverseX' register.

Write to 'Value' field of 'ReverseY' register.

// Set Reverse (flip horizontal and vertical direction)
uint32_t dat = 1;
Cam_WriteReg(s_hCam, 0x2021B0, 1, &dat);
Cam_WriteReg(s_hCam, 0x2021D0, 1, &dat);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Note

- Changing 'ReverseX', 'ReverseY' register value is invalid during image stream data output.

PixelFormat

Select a pixel format of image stream data.

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
PixelCoding	IEnumeration	4	R/W	Selects a pixel coding.
PixelSize	IEnumeration	4	R/W	Selects a bit size of image pixel.
PixelFormat	IEnumeration	4	R/W	Selects a pixel format.
				PixelFormat is conformed to AIA Pixel Format Naming Convention.

Register	Field	Address	Length Byte / [bit]	Access	Description
PixelCoding	Implemented	0x2020C0	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x2020CC	16	R	Returns the presence of the pixel coding.
		~0x2020D8			[0] : Mono
					[96] : BayerGR
					[99] : BayerRG
					[102] : BayerGB
					[105] : BayerBG
	Value	0x2020DC	4	R/W	Selects a pixel cording.
PixelSize	Implemented	0x2020E0	0x2020E0 [31] R Returns the state whether the function is implemented		Returns the state whether the function is implemented.
	ListOfElements	0x2020EC	16	R	[8] : Bpp8
		~0x2020F8			[10] : Bpp10
					[12] : Bpp12
	Value	0x2020FC	4	R/W	Selects a bit size of image pixel.

Register	Field	Address	Length Byte / [bit]	Access	Description
PixelFormat	Implemented	0x202400	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20240C	16	R	Returns the presence of the pixel endian.
		~0x202418			[1] : Mono8
					[3] : Mono10
					[5] : Mono12
					[8] : BayerGR8
					[9] : BayerRG8
					[10] : BayerGB8
					[11] : BayerBG8
					[12] : BayerGR10
					[13] : BayerRG10
					[14] : BayerGB10
					[15] : BayerBG10
					[16] : BayerGR12
					[17] : BayerRG12
					[18] : BayerGB12
					[19] : BayerBG12
	Value	0x20241C	4	R/W	Selects a pixel format

• Supported PixelFormat

◆B/W model

PixelSize PixelCoding	Bpp8	Bpp10	Bpp12	
Mono	Mono8 (*)	Mono10	Mono12	
PixelFormat ID	0x01080001	0x01100003	0x01100005	

* initial factory setting

♦Color model

PixelSize PixelCoding	Bpp8	Bpp10	Bpp12
BayerBG(*2)	BayerBG8(*)	BayerBG10	BayerBG12
PixelFormat ID	0x0108000B	0x0110000F	0x01100013

* initial factory setting

*2 ReverseX and ReverseY settings are FALSE

◆Bayer PixelFormat in Reverse function

ReverseX ReverseY	FALSE		TRUE		
FALSE	Baye	erBG	BayerGB		
	Bpp8	0x0108000B	Bpp8	0x0108000A	
	Bpp10	0x0110000F	Bpp10	0x0110000E	
	Bpp12	0x01100013	Bpp12	0x01100012	
	Baye	erGR	BayerRG		
TRUE	Bpp8	0x01080008	Bpp8	0x01080009	
	Bpp10	0x0110000C	Bpp10	0x0110000D	
	Bpp12	0x01100010	Bpp12	0x01100011	

Bayer PixelFormat in Decimation function

Horizontal Vertical	1		2		4	
	Ва	ayerBG	B	ayerBG	Ba	ayerBG
4	Bpp8	0x0108000B	Bpp8	0x0108000B	Bpp8	0x0108000B
1	Bpp10	0x0110000F	Bpp10	0x0110000F	Bpp10	0x0110000F
	Bpp12	0x01100013	Bpp12	0x01100013	Bpp12	0x01100013
	BayerBG		BayerGR		BayerGR	
2	Bpp8	0x0108000B	Bpp8	0x01080008	Bpp8	0x01080008
Z	Bpp10	0x0110000F	Bpp10	0x0110000C	Bpp10	0x0110000C
	Bpp12	0x01100013	Bpp12	0x01100010	Bpp12	0x01100010
	BayerBG		B	ayerGR	Ba	ayerGR
	Bpp8	0x0108000B	Bpp8	0x01080008	Bpp8	0x01080008
4	Bpp10	0x0110000F	Bpp10	0x0110000C	Bpp10	0x0110000C
	Bpp12	0x01100013	Bpp12	0x01100010	Bpp12	0x01100010

 $$59\/\ 157$ Copyright © 2020 Toshiba Teli Corporation, All rights reserved.

• Control with TeliCamSDK

Camera feature API

Control PixelFormat using dedicated API.

API name	Description
GetCamPixelFormat	Get current PixelFormat value
SetCamPixelFormat	Set new PixelFormat value

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control PixelFormat using GenICam API.

PixelCoding/PixelSize

To determine PixelFormat combination of 'PixelCoding' and 'PixelSize' register.

1. Select a pixel coding. ('PixelCoding').

Integer value and string value of Enumeration are as follows.

Integer	String
0	Mono
96	BayerGR
99	BayerRG
102	BayerGB
105	BayerBG

2. Select a bit size of image pixel ('PixelSize').

Integer value and string value of Enumeration are as follows.

Integer	String
8	Bpp8
10	Bpp10
12	Bpp12

// GenICam node handle		
CAM_NODE_HANDLE hCoding = NULL;		
CAM_NODE_HANDLE hSize = NULL;		
// Retrieve GenICam node.		
Nd_GetNode(s_hCam, "PixelCoding", &hCoding);		
Nd_GetNode(s_hCam, "PixelSize", &hSize);		
// 1.Select a pixel coding.		
Nd_SetEnumStrValue(s_hCam, hCoding, "Mono");		
// 2.Select a pixel size.		
Nd_SetEnumStrValue(s_hCam, hSize, "Bpp10");		

PixelFormat

Select a pixel format. ('PixelFormat').

Integer value and string value of Enumeration are as follows.

Integer	String	Integer	String
1	Mono8	12	BayerGR10
3	Mono10	13	BayerRG10
5	Mono12	14	BayerGB10
8	BayerGR8	15	BayerBG10
9	BayerRG8	16	BayerGR12
10	BayerGB8	17	BayerRG12
11	BayerBG8	18	BayerGB12
		19	BayerBG12

```
// GenICam node handle
CAM_NODE_HANDLE hFormat = NULL;
```

// Retrieve GenICam node.

Nd_GetNode(s_hCam, "PixelFormat", &hFormat);

// 1.Select a pixel format. Nd_SetEnumStrValue(s_hCam, hFormat, "Mono10");

Please refer to [INode functions], [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Control PixelFormat by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

PixelCoding/PixelSize

To determine PixelFormat combination of 'PixelCoding' and 'PixelSize' register.

- 1. Write to 'Value' field of 'PixelCoding' register.
- 2. Write to 'Value' field of 'PixelSize' register.

uint32_t coding = 0; // Mono uint32_t size = 10; // Bpp10 // 1.Select a pixel coding. Cam_WriteReg(s_hCam, 0x2020DC, 1, &coding); // 2.Select a pixel size. Cam_WriteReg(s_hCam, 0x2020FC, 1, &size);

♦ PixelFormat

Write to 'Value' field of 'PixelFormat' register.

uint32_t format = 3; // Mono10

// 1.Select a pixel format. Cam_WriteReg(s_hCam, 0x20241C, 1, &format);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Note

Changing 'PixelFormat' register value is invalid during image stream data output.

TestPattern

BU series supports test pattern data output. Camera provides following Test patterns;

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
TestPattern	IEnumeration	4	R/W	Selects a Test pattern.

Register	Field	Address	Length Byte / [bit]	Access	Description	
TestPattern	Implemented	0x21F120	[31]	R	Returns the state whether the function is implemented.	
	ListOfElements	0x21F12C	16	R	Returns the presence of test pattern.	
		~0x21F138			[0] : Off	
					[1] : Black	
					[2] : White	
					 [3] : GrayA [4] : GrayB [5] : GreyHorizontalRamp [6] : GrayScale 	
					[7] : ColorBar	
					[8] : GreyVerticalRamp	
	Value	0x21F13C	4	R/W	Selects a Test pattern.	

• Control with TeliCamSDK

Camera feature API

Control TestPattern using dedicated API.

API name	Description
GetCamTestPattern	Get current TestPattern value
SetCamTestPattern	Set new TestPattern value

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control TestPattern using GenICam API.

♦TestPattern

Select a test pattern.

Integer value and string value of Enumeration are as follows.

Integer	String	Function	
0 (*)	Off (*)	Test pattern disable(Normal data output)	
1	Black	All pixel = 0 LSB	
2	White	All pixel = 255 @Mono8	
3	GreyA	All pixel = 170 @Mono8	
4	GreyB	All pixel = 85 @Mono8	
5	GreyHorizontalRamp	Horizontal Ramp	
6	GreyVerticalRamp	Vertical Ramp	
7	GreyScale	Grey scale (B/W model only)	
8	ColorBar	Color bars (Color model only)	

* initial factory setting

// GenICam node handle CAM_NODE_HANDLE hNode = NULL; // Retrieve GenICam node. Nd_GetNode(s_hCam, "TestPattern", & hNode); // 1.Select a test pattern.

Nd_SetEnumStrValue(s_hCam, hNode, "GreyHorizontalRamp");

Please refer to [INode functions], [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Control TestPattern by accessing IIDC2 registers directly.

API name	Description	
Cam_ReadReg	Read register value	
Cam_WriteReg	Write register value	

♦TestPattern

Write to 'Value' field of 'TestPattern' register.

uint32_t dat = 5; // Horizontal Ramp

// 1.Select a test pattern.
Cam_WriteReg(s_hCam, 0x21F13C, 1, &dat);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

AcquisitionControl

AcquisitionControl features are related to image acquisition.

Camera starts image stream output by receiving AcquisitionStart command.

Camera stops image stream output by receiving AcquisitionStop command.

There are some registers that require camera to stop image stream output to change values.

Acquisition frame rate is variable. Maximum acquisition frame rate depends on camera operation mode. (Scalable, PixelFormat, etc.)

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description	
AcquisitionMode	IEnumeration	4	R/W	Selects an acquisition mode.	
AcquisitionStart	ICommand	4	W	Executes the image stream output start.	
AcquisitionStop	ICommand	4	W	Executes the image stream output stop.	
AcquisitionAbort	ICommand	4	W	Executes the image stream output abort.	
AcquisitionFrameCount	IInteger	4	R/W	Sets the number of frames to transfer in MultiFrame/ImageBuffer mode	
AcquisitionFrameRateEnable	IEnumeration	4	R/W	Selects an AcquisitionFrameRate setting priority.	
AcquisitionFrameRate	IFloat	4	R/W	Sets frame rate of image stream.	
AcquisitionFrameIntervalControl	IEnumeration	4	R/W	Selects an AcquisitionFrameInterval setting priority.	
AcquisitionFrameInterval	IFloat	4	R/W	Sets frame interval of image stream.	

Register	Field	Address	Length Byte / [bit]	Access	Description	
AcquisitionMode	Implemented	0x203020	[31]	R	Returns the state whether the function is implemented.	
	ListOfElements	0x20302C	16	R	[0]: Abort	
		~0x203038			[1]: Stop	
					[8]: Continuous	
					[9]: MultiFrame	
					[10]: Image Buffer Read	
	Value	0x20303C	4	R/W	Selects an Acquisition mode.	
AcquisitionFrameCount	Implemented	0x203040	[31]	R	Returns the state whether the function is implemented.	
	Min	0x203054	4	R	Returns the minimum number of frames in	
					MultiFrame/ImageBuffer mode.	
	Max	0x203058	4	R	Returns the maximum number of frames in	
					MultiFrame/ImageBuffer mode.	
	Value	0x20305C	4	R/W	Sets the number of frames in MultiFrame/ImageBuffer mode.	
AcquisitionFrameRate	Implemented	0x2030A0	[31]	R	Returns the state whether the function is implemented.	
	Control	0x2030A8	4	R/W	[0] : NoSpecify	
					[1] : Manual	
	Mult	0x2030AC	4	R	Abaah ta Valua Kaal Daw * (Mult / Div)	
	Div	0x2030B0	4	R	Absolute value [ips] = Raw (Mult / Div)	
	Min	0x2030B4	4	R	Returns the minimum value of frame rate.	
	Max	0x2030B8	4	R	Returns the maximum value of frame rate.	
	Value	0x2030BC	4	R/W	Sets frame rate of image stream in raw value.	
AcquisitionFrameInterval	Implemented	0x2030C0	[31]	R	Returns the state whether the function is implemented.	
	Control	0x2030C8	4	R/W	[0] : NoSpecify	
					[1] : Manual	
	Mult	0x2030CC	4	R		
	Div	0x2030D0	4	R	Absolute value[sec] = Raw (INUIT / DIV)	
	Min	0x2030D4	4	R	Returns the minimum value of frame interval.	
	Max	0x2030D8	4	R	Returns the maximum value of frame interval.	
	Value	0x2030DC	4	R/W	Sets frame interval of image stream in raw value.	

Control with TeliCamSDK

There are three way to access this feature.

Camera feature API

This API is dedicated to AcquisitionControl.

API name	Description	
GetCamAcquistionFrameCountMinMax	Get minimum and maximum value	
GetCamAcquistionFrameCount	Get current value	
SetCamAcquistionFrameCount	Set new value	
GetCamAcquistionFrameRateControl	Get current value	
SetCamAcquistionFrameRateControl	Set new value	
GetCamAcquistionFrameRateMinMax	Get minimum and maximum value	
GetCamAcquistionFrameRate	Get current value	
SetCamAcquistionFrameRate	Set new value	

1. Set the number of frames to transfer in MultiFrame/ImageBuffer mode. (optional) Set 'AcquisitionFrameCount' with 'SetCamAcquistionFrameCount' function.

*If you want to capture image stream continuously, it's not necessary to set an AcquisitionFrameCount.

2. Select an 'AcquisitionFrameRate' setting priority. (optional)

Set 'AcquisitionFrameRateControl' with 'SetCamAcquistionFrameRateControl' function.

AcquisitionFrameRateControl	Function	
NoSpecify (*)	The frame rate is determined by giving priority to ExposureTime setting value.	
Manual	The frame rate is determined by giving priority to AcquisitionFrameRate setting value.	

* initial factory setting

3. Set frame rate of image stream. (optional)

Set 'AcquisitionFrameRate' with 'SetCamAcquistionFrameRate' function.

Or, set 'AcquisitionFrameInterval' with 'SetCamAcquistionFrameInterval' function.

'AquisitionFrameInterval' is a reciprocal of 'AcquisitionFrameRate'.

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

4. Capture image stream.

TeliCamAPI provides streaming functions including command handling and buffer handling to capture image stream simply.

Please refer to [Camera streaming functions] in [TeliCamAPI Library manual] and

[GrabStreamSimple] sample code in your TeliCamSDK install folder.

GenICam function API

This API controls AcquisitionControl using GenICam.

- 1. Set the number of frames to transfer in MultiFrame/ImageBuffer mode. (optional)
 - Get 'IInteger' interface handle of 'AcquisitionFrameCount' by 'Nd_GetNode'.
 - Set AcquisitionFrameCount with IInteger node functions.
 - (e.g. 'Nd_GetIntMin', 'Nd_GetIntMax', 'Nd_GetIntValue', 'Nd_SetIntValue')

*If you want to capture image stream continuously, it's not necessary to set an AcquisitionFrameCount.

2. Select an 'AcquisitionFrameRate' setting priority. (optional)

Get 'IEnumeration' interface handle of 'AcquisitionFrameRateControl' by 'Nd_GetNode'.

Set AcquisitionFrameRateControl with IEnumeration node functions.

(e.g. 'Nd_GetEnumIntValue', 'Nd_SetEnumIntValue', 'Nd_GetEnumStrValue', 'Nd_SetEnumStrValue') Integer value and string value of Enumeration are as follows.

Integer	String	
0(*)	NoSpecify	
1	Manual	
I	Ivianuai	

* initial factory setting

3. Set frame rate of image stream. (optional)

Get 'IFloat' interface handle of 'AcquisitionFrameRate' or 'AcquisitionFrameInterval' by 'Nd_GetNode'.

Set AcquisitionFrameRate or AcquisitionFrameInterval with IFloat node functions.

'AquisitionFrameInterval' is a reciprocal of 'AcquisitionFrameRate'.

(e.g. 'Nd_GetFloatMin', 'Nd_GetFloatMax', 'Nd_GetFloatValue', 'Nd_SetFloatValue')

4. Capture image stream.

TeliCamAPI provides streaming functions including command handling and buffer handling to capture image stream simply.

Please refer to [Camera streaming functions] in [TeliCamAPI Library manual] and

[GrabStreamSimple] sample code in your TeliCamSDK install folder.

This API access IIDC2 registers directly.

API name	Description	
Cam_ReadReg	Read register value	
Cam_WriteReg	Write register value	

- 1. Set the number of frames to transfer in MultiFrame/ImageBuffer mode. (optional) Write to 'Value' field of 'AcquisitionFrameCount' register to control AcquisitionFrameCount.
- 2. Select an 'AcquisitionFrameRate' setting priority. (optional)

Write to 'Control' field of 'AcquisitionFrameRate' register to control AcquisitionFrameRate setting priority.

3. Set frame rate of image stream. (optional)

Write to 'Value' field of 'AcquisitionFrameRate' register to control AcquisitionFrameRate.

4. Capture image stream.

TeliCamAPI provides streaming functions including command handling and buffer handling to capture image stream simply.

Please refer to [Camera streaming functions] in [TeliCamAPI Library manual] and

[GrabStreamSimple] sample code in your TeliCamSDK install folder.

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

AcquisitionFrameRate		BU2409MG	BU2409MCG /BU2409MCF		
Raw Value			1		
wiiniinium	Absolute (Float) Value	0.061 [fps]			
Raw Value		Depend on register acting of "Usight"			
Maximum	Absolute (Float) Value	Depend on register setting of meight.			
Initial Value	Raw Value	256	256		
Initial value	Absolute (Float) Value	15.6 [fps] 15.6 [fps]			
Fomula		Absolute Value [fps] = Raw Value * 125 / 2048			
• Note

Changing 'AcquisitionFrameRateControl', 'AcquisitionFrameRate', 'AcquisitionFrameIntervalControl', 'AcquisitionFrameInterval' register value is invalid during image stream data output.

When exposure time setting is longer than frame rate setting, camera operation gives priority to exposure time setting.

Notes on Frame Drops of Image:

Depends on your PC or interface card configurations, images may not be captured normally (e.g. frame drops may occur). In this case, change to frame rate setting lower.

ImageBuffer

In ImageBuffer mode, Camera stores images temporarily in image buffer, and read them out in arbitrary timing.

This function is typically used in Random Trigger Shutter mode.

Please refer to TriggerControl section as well.

Image Buffer

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
ImageBufferMode	IEnumeration	4	R/W	Selects an Image Buffer mode.
ImageBufferFrameCount	IInteger	4	R/W	Sets the number of frames to transfer in MultiFrame/ImageBuffer mode.
ImageBufferRead	ICommand	4	W	Read Image from Image Buffer

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
ImageBufferMode	Implemented	0x203060	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20306C	16	R	[0] : Off
		~0x203078			[1] : On
	Value	0x20307C	4	R/W	Sets an Image Buffer mode.
ImageBufferFrameCount Implemented		0x203080	[31]	R	Returns the state whether the function is implemented.
	Min	0x203094	4	R	Returns the minimum number of frames in Image Buffer mode.
	Max	0x203098	4	R	Returns the maximum number of frames in Image Buffer mode.
	Value	0x20309C	4	R	Returns the number of frames in Image Buffer mode.

• Control with TeliCamSDK

Camera feature API

Control ImageBuffer using dedicated API.

API name	Description		
GetCamImageBufferMode	Get current ImageBuffer mode		
SetCamImageBufferMode	Set new ImageBuffer mode		
GetCamImageBufferFrameCount	Get current ImageBufferFrameCount value		
ExecuteCamImageBufferRead	Read Image from Image Buffer		

♦ImageBuffer

1. Select an Image Buffer mode.

Set 'ImageBufferMode' with 'SetCamImageBufferMode' function.

2. Capture image stream.

To start and stop capturing image is the same way as AcquisitionControl.

Please refer to 'AcquisitionControl' section as well.

3. Read the number of frames in Image Buffer.

Read the number of frames in Image Buffer with 'GetCamImageBufferFrameCount' function.

4. Read Image from Image Buffer.

Start to read Image from Image Buffer with 'ExecuteCamImageBufferRead' function.

5. Receive Image from Image Buffer.

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control ImageBuffer using GenICam API.

♦ImageBuffer

1. Select an Image Buffer mode by 'ImageBufferMode'.

Integer value and string value of Enumeration are as follows.

Integer	String		
0(*)	Off		
1	On		

* initial factory setting

2. Open and Start image stream.

To start and stop capturing image is the same way as AcquisitionControl.

Please refer to AcquisitionControl section as well.

- 3. Read the number of frames in Image Buffer by 'ImageBufferFrameCount'.
- 4. Read Image from Image Buffer by 'ImageBufferRead'.
- 5. Receive Image from Image Buffer.
- 6. Stop and Close image stream.

```
// GenICam node handle
CAM_NODE_HANDLE hMode = NULL;
CAM_NODE_HANDLE hCount = NULL;
CAM_NODE_HANDLE hRead = NULL;
// Retrieve GenICam node.
Nd_GetNode(s_hCam, "ImageBufferMode", &hMode);
Nd_GetNode(s_hCam, "ImageBufferFrameCount", &hCount);
Nd_GetNode(s_hCam, "ImageBufferRead", &hRead);
// 1.Select an Image Buffer mode
Nd_SetEnumStrValue(s_hCam, hMode, "On");
// 2.Open and Start image stream.
// 2.1.Set Trigger mode
     SetCamTriggerMode(s_hCam, true);
     SetCamTriggerSource(s_hCam, CAM_TRIGGER_SOFTWARE);
// 2.2.Open Stream
     s_hStrmEvt = CreateEvent(NULL, FALSE, FALSE, NULL);
     Strm_OpenSimple(s_hCam, &s_hStrm, &s_uilmgBufSize, s_hStrmEvt);
     s_pucImgBuf = (uint8_t *)VirtualAlloc(NULL, s_uiImgBufSize, MEM_RESERVE
| MEM_COMMIT, PAGE_EXECUTE_READWRITE);
// 2.3.Stream Start
     Strm_Start(s_hStrm);
// 2.4.Execute Software Trigger
     ExecuteCamSoftwareTrigger(s_hCam);
// 3.Read the number of frames in Image Buffer by 'ImageBufferFrameCount'.
int64_t count = 0;
while(count==0)
{
     Nd_GetIntValue(s_hCam, hCount, &count);
}
// 4.Read Image from Image Buffer by 'ImageBufferRead'.
Nd_CmdExecute(s_hCam, hRead);
// 5.Receive Image from Image Buffer
     uint32_t uiSize = s_uiImgBufSize;
     WaitForSingleObject(s_hStrmEvt, 1000);
     Strm_ReadCurrentImage(s_hStrm, s_pucImgBuf, &uiSize, NULL);
// 6.Stop and Close image stream.
// 6.1.Stream Stop
     Strm_Stop(s_hStrm);
//
  6.2.Close Stream
     Strm_Close(s_hStrm);
     CloseHandle(s_hStrmEvt);
     VirtualFree(s_pucImgBuf, 0, MEM_RELEASE);
```

Register access API

Control Image Buffer by accessing IIDC2 registers directly.

API name	Description		
Cam_ReadReg	Read register value		
Cam_WriteReg	Write register value		

♦ImageBuffer

1. Select an Image Buffer mode.

Write to 'Value' field of 'ImageBufferMode' register to control ImageBufferMode.

2. Open and Start image stream.

To start and stop capturing image is the same way as AcquisitionControl.

Please refer to AcquisitionControl section as well.

3. Read the number of frames in Image Buffer.

Read 'Value' field of 'ImageBufferFrameCount' register.

4. Read Image from Image Buffer.

Write [10] to 'Value' field of 'AcquisitionCommand' register to execute ImageBufferRead. Please refer to AcquisitionCommand in AcquisitionControl section as well.

- 5. Receive Image from Image Buffer.
- 6. Stop and Close image stream.

```
// 1.Select an Image Buffer mode
uint32_t
           dat = 1;
Cam_WriteReg(s_hCam, 0x20307C, 1, &dat);
// 2.Open and Start image stream.
// 2.1.Set Trigger mode
     SetCamTriggerMode(s_hCam, true);
     SetCamTriggerSource(s_hCam, CAM_TRIGGER_SOFTWARE);
// 2.2.Open Stream
     s_hStrmEvt = CreateEvent(NULL, FALSE, FALSE, NULL);
     Strm_OpenSimple(s_hCam, &s_hStrm, &s_uilmgBufSize, s_hStrmEvt);
     s_pucImgBuf = (uint8_t *)VirtualAlloc(NULL, s_uiImgBufSize, MEM_RESERVE
| MEM_COMMIT, PAGE_EXECUTE_READWRITE);
// 2.3.Stream Start
     Strm_Start(s_hStrm);
// 2.4.Execute Software Trigger
     ExecuteCamSoftwareTrigger(s_hCam);
// 3.Read the number of frames in Image Buffer.
uint32_t count = 0;
while(count==0)
{
     Cam_ReadReg(s_hCam, 0x20309C, 1, &count);
}
// 4.Read Image from Image Buffer. AcquisitionCommand = 10 : Image Buffer Read
dat = 10;
Cam_WriteReg(s_hCam, 0x20303C, 1, &dat);
// 5.Receive Image from Image Buffer
     uint32_t uiSize = s_uiImgBufSize;
     WaitForSingleObject(s_hStrmEvt, 1000);
     Strm_ReadCurrentImage(s_hStrm, s_pucImgBuf, &uiSize, NULL);
// 6.Stop and Close image stream.
// 6.1.Stream Stop
     Strm Stop(s hStrm);
// 6.2.Close Stream
     Strm_Close(s_hStrm);
     CloseHandle(s_hStrmEvt);
     VirtualFree(s_pucImgBuf, 0, MEM_RELEASE);
```

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Note

The maximum number of frames storable depends on the image size. (maximum 256MByte.) The number of frames to be transferred by 'ImageBufferRead' command is determined by 'AcquisitionFrameCount'.

Changing 'ImageBufferMode' register value is invalid during image stream data output.

TriggerControl

TriggerControl features are related to image acquisition using trigger.

This camera series provides two kinds of exposure synchronization.

- 1. Normal Shutter mode : Free run operation (internal synchronization)
- 2. Random Trigger Shutter mode : Synchronized with external trigger input

In Random Trigger Shutter mode, two kinds of trigger input are available.

- 1. Trigger signal via the I/O connector (HardwareTrigger)
- 2. Trigger command via software command (SoftwareTrigger)

The following table shows the combination of operation mode of this camera series.

Trigger Mode	Synchronization	Exposure Control		
Normal Shutter mode	Free run	"ExposureTime" register control		
		-Edge mode:TriggerSequence0		
		-Bulk mode:TriggerSequence6		
	HardwareTrigger	"ExposureTime" register control		
Deadors Trianer Chutter mode		-Level mode:TriggerSequence1		
Random Engger Snutter mode		Trigger pulse width control		
		-Edge mode:TriggerSequence0		
	SoftwareTrigger	-Bulk mode:TriggerSequence6		
		"ExposureTime" register control		

Operation Mode

* The camera operation not mentioned above is not supported.

- Edge mode (TriggerSequence0)

The exposure time is determined by Exposure Time setting.

Trigger	ExposureTime
Exposure	
USB Streaming	Image

- Level mode (TriggerSequence1)

The exposure time is determined by the pulse width of the trigger signal.

_ Trigger	Pulse Width
Exposure _	
USB Streaming	Image

- Bulk mode (TriggerSequence6)

Camera exposes and transfers multiple frames by a single trigger.

– Trigger	
	ExposureTime TriggerAdditionalParameter = 3
Exposure	
USB Streaming	Image Image Image

Operation point of HardwareTrigger is at the edge of trigger signal, and active edge polarity is able to change by register setting. And you can add delay time from trigger edge to exposure start by register setting.

Trigger signal						
	→ TriggerDelay					
Exposure						
USB Streaming	Image					
Trigger Delay						

For details of Random Trigger Shutter operation, please refer to 'Timing' section in 'Specification'.

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
TriggerMode	IEnumeration	4	R/W	Selects a trigger mode.
TriggerSoftware	ICommand	4	W Executes software trigger.	
TriggerSource	IEnumeration	4	R/W	Selects a trigger source of random trigger shutter.
TriggerActivation	IEnumeration	4	R/W	Selects a trigger activation of hardware trigger.
TriggerDelay	IFloat	4	R/W	Sets a trigger delay.
TriggerSequence	IEnumeration	4	R/W	Selects a trigger sequence of random trigger shutter.
TriggerAdditionalParameter	IInteger	4	R/W	Sets the number of frames to exposure in Bulk mode.

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
TriggerMode	Implemented	0x207020	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20702C	16	R	[0] : OFF (Normal shutter)
		~0x207038			[1] : ON (Random trigger shutter)
	Value	0x20703C	4	R/W	Selects a trigger mode.
TriggerSequence	Implemented	0x207040	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20704C	16	R	[0] : TriggerSequence0 (Edge mode)
		~0x207058			[1] : TriggerSequence1 (Level mode)
					[6] : TriggerSequence6 (Bulk mode)
	Value	0x20705C	4	R/W	Selects an exposure mode.
TriggerSource	Implemented	0x207060	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20706C	16	R	[0] : Line0 (Hardware Trigger)
		~0x207078			[2] : Line2 (Hardware Trigger)
					[64] : Software (SoftwareTrigger)
	Value	0x20707C	4	R/W	Selects a trigger source.
TriggerAdditionalParameter	Implemented	0x207080	[31]	R	Returns the state whether the function is implemented.
	Min	0x207094	4	R	Returns the minimum value of the number of images in
					Bulk mode.
	Max	0x207098	4	R	Returns the maximum value of the number of images in
					Bulk mode.
	Value	0x20709C	4	R/W	Sets the number of frames to exposure in Bulk mode.

Register	Field	Address	Length Byte / [bit]	Access	Description
TriggerDelay	Implemented	0x2070A0	[31]	R	Returns the state whether the function is implemented.
	Mult	0x2070AC	4	R	Absolute)/cluc[coc] - Row * (Mult / Div)
	Div	0x2070B0	4	R	Absolutevalue[sec] = Kaw (iviuit / Div)
	Min	0x2070B4	4	R	Returns the minimum value of trigger delay.
	Max	0x2070B8	4	R	Returns the maximum value of trigger delay.
	Value	0x2070BC	4	R/W	Sets the trigger delay.(Raw value)
SoftwareTrigger	Implemented	0x207040	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20702C	16	R	[0] : Inactive
		~0x207038			[8] : Impulse
	Value	0x20705C	4	R/W	Executes software trigger.

Control with TeliCamSDK

Camera feature API

Control Trigger features using dedicated API.

API name	Description
GetCamTriggerMode	Get current TriggerMode
SetCamTriggerMode	Set new TriggerMode
GetCamTriggerSequence	Get current TriggerSequence
SetCamTriggerSequence	Set new TriggerSequence
GetCamTriggerSource	Get current TriggerSource
SetCamTriggerSource	Set new TriggerSource
GetCamTriggerAdditionalParameterMinMax	Get minimum and maximum value
GetCamTriggerAdditionalParameter	Get current TriggerAdditionalParameter value
SetCamTriggerAdditionalParameter	Set new TriggerAdditionalParameter value
GetCamTriggerDelayMinMax	Get minimum and maximum value
GetCamTriggerDelay	Get current TriggerDelay value
SetCamTriggerDelay	Set new TriggerDelay value
ExecuteCamSoftwareTrigger	Execute Software Trigger

1. Select a trigger mode.

Set 'TriggerMode' with 'SetCamTriggerMode' function.

- 2. Select a trigger sequence of random trigger shutter.
 - Set 'TriggerSequence' with 'SetCamTriggerSequence' function.
- 3. Select a trigger source of random trigger shutter.

Set 'TriggerSource' with 'SetCamTriggerSource' function.

- 4. Select a trigger activation of hardware trigger.
- 5. Set the number of frames to exposure in Bulk mode.

Set 'TriggerAdditionalParameter' with 'SetCamTriggerAdditionalParameter' function.

6. Set a trigger delay.

Set 'TriggerDelay' with 'SetCamTriggerDelay' function.

7. Capture image stream.

To start and stop capturing image is the same way as AcquisitionControl.

Please refer to [Camera streaming functions] in [TeliCamAPI Library manual]

and [GrabStreamSimple] sample code in your TeliCamSDK install folder.

8. Execute software trigger.

Execute Software Trigger in SoftwareTrigger mode with 'ExecuteCamSoftwareTrigger' function.

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control Trigger features using GenICam API.

1. Select a trigger mode by 'TriggerMode'.

Integer value and string value of Enumeration are as follows.

Integer	String
0(*)	Off
1	On

* initial factory setting

2. Select a trigger sequence of random trigger shutter by 'TriggerSequence'. Integer value and string value of Enumeration are as follows.

Integer	String
0(*)	TriggerSequence0
1	TriggerSequence1
6	TriggerSequence6

* initial factory setting

3. Select a trigger source of random trigger shutter by 'TriggerSource'.

Integer value and string value of Enumeration are as follows.

Integer	String
0(*)	Line0
2	Line2
64	Software

* initial factory setting

- 4. Select a trigger activation of hardware trigger by 'Trigger Activation.
- 5. Set the number of frames to exposure in Bulk mode by 'TriggerAdditionalParameter'.
- 6. Set a trigger delay by 'TriggerDelay'.
- 7. Capture image stream.
 - To start and stop capturing image is the same way as AcquisitionControl.

Please refer to [Camera streaming functions] in [TeliCamAPI Library manual] and

[GrabStreamSimple] sample code in your TeliCamSDK install folder.

- 8. Execute software trigger in SoftwareTrigger mode by 'TriggerSoftware'.
- 9. Receive Image
- 10. Stop and Close image stream.

// GenICam node handle CAM_NODE_HANDLE hMode = NULL; CAM_NODE_HANDLE hSource = NULL; CAM_NODE_HANDLE hAdditionalParameter = NULL; CAM_NODE_HANDLE hDelay = NULL; CAM_NODE_HANDLE hTriggerSoftware = NULL; // Retrieve GenICam node. Nd_GetNode(s_hCam, "TriggerMode", &hMode); Nd_GetNode(s_hCam, "TriggerSequence", &hSequence); Nd_GetNode(s_hCam, "TriggerSource", &hSource); Nd_GetNode(s_hCam, "TriggerAdditionalParameter", &hAdditionalParameter); Nd_GetNode(s_hCam, "TriggerDelay", &hDelay); Nd_GetNode(s_hCam, "TriggerSoftware", &hTriggerSoftware); // 1. Select a trigger mode by 'TriggerMode'. Nd_SetEnumStrValue(s_hCam, hMode, "On"); // 2. Select a trigger sequence of random trigger shutter by 'TriggerSequence'. Nd_SetEnumStrValue(s_hCam, hSequence, "TriggerSequence6"); // Bulk mode // 3. Select a trigger source of random trigger shutter by 'TriggerSource'. Nd_SetEnumStrValue(s_hCam, hSource, "Software"); // Software // 4.Select a trigger activation of hardware trigger by 'LineInverterAll'. // -- not applicable for Software Trigger // 5.Set the number of frames to exposure in Bulk mode by 'TriggerAdditionalParameter'. Nd_SetIntValue(s_hCam, hAdditionalParameter, 3); // 3 frames // 6.Set a trigger delay by 'TriggerDelay'. Nd SetFloatValue(s hCam, hDelay, 1000.0); // 1ms // 7.Open and Start image stream. // 7.1.Open Stream s_hStrmEvt = CreateEvent(NULL, FALSE, FALSE, NULL); Strm_OpenSimple(s_hCam, &s_hStrm, &s_uilmgBufSize, s_hStrmEvt); s_pucImgBuf = (uint8_t *)VirtualAlloc(NULL, s_uiImgBufSize, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE); // 7.2.Stream Start Strm_Start(s_hStrm); // 8.Execute software trigger in SoftwareTrigger mode by 'TriggerSoftware'. Nd_CmdExecute(s_hCam,hTriggerSoftware); // 9.Receive Image uint32 t uiSize = s uiImgBufSize; CAM_IMAGE_INFO sImageInfo; for(int i=0; i<3; i++) { WaitForSingleObject(s_hStrmEvt, 1000); Strm_ReadCurrentImage(s_hStrm, s_pucImgBuf, &uiSize, &sImageInfo); // 10.Stop and Close image stream. // 10.1.Stream Stop Strm_Stop(s_hStrm); // 10.2.Close Stream Strm Close(s hStrm); CloseHandle(s_hStrmEvt); VirtualFree(s_pucImgBuf, 0, MEM_RELEASE);

Please refer to [INode functions], [IEnumeration node functions][ICommand node functions][IInteger node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control Trigger features by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

1. Select a trigger mode.

Write to 'Value' field of 'TriggerMode' register to control TriggerMode.

2. Select a trigger sequence of random trigger shutter.

Write to 'Value' field of 'TriggerSequence' register to control TriggerSequence.

3. Select a trigger source of random trigger shutter.

Write to 'Value' field of 'TriggerSource' register to control TriggerSource.

- 4. Select a trigger activation of hardware trigger.
- 5. Set the number of frames to exposure in Bulk mode.

Write to 'Value' field of 'TriggerAdditionalParameter' register to control TriggerAdditionalParameter.

6. Set a trigger delay.

Write to 'Value' field of 'TriggerDelay' register to control TriggerDelay.

7. Open and Start image stream.

To start and stop capturing image is the same way as AcquisitionControl.

Please refer to [Camera streaming functions] in [TeliCamAPI Library manual] and

[GrabStreamSimple] sample code in your TeliCamSDK install folder.

8. Execute software trigger.

Write [8] to 'Value' field of 'SoftwareTrigger' register to execute Software trigger..

- 9. Receive Image
- 10. Stop and Close image stream.

uint32_t dat; // 1. Select a trigger mode by 'TriggerMode'. dat = 1: Cam_WriteReg(s_hCam, 0x20703C, 1, &dat); // TriggerMode = On // 2. Select a trigger sequence of random trigger shutter by 'TriggerSequence'. dat = 6; Cam_WriteReg(s_hCam, 0x20705C, 1, &dat); // TriggerSequence6 (Bulk mode) // 3. Select a trigger source of random trigger shutter by 'TriggerSource'. dat = 64:Cam_WriteReg(s_hCam, 0x20707C, 1, &dat); // Software // 4.Select a trigger activation of hardware trigger by 'LineInverterAll'. // -- not applicable for Software Trigger // 5.Set the number of frames to exposure in Bulk mode by 'TriggerAdditionalParameter'. dat = 3;Cam_WriteReg(s_hCam, 0x20709C, 1, &dat); // 3 frames // 6.Set a trigger delay by 'TriggerDelay'. // TriggerDelay = 1000.0us (Raw value = 60000) dat = 60000;Cam_WriteReg(s_hCam, 0x2070BC, 1, &dat); // 1ms // 7.Open and Start image stream. // 7.1.Open Stream s_hStrmEvt = CreateEvent(NULL, FALSE, FALSE, NULL); Strm_OpenSimple(s_hCam, &s_hStrm, &s_uilmgBufSize, s_hStrmEvt); s_pucImgBuf = (uint8_t *)VirtualAlloc(NULL, s_uiImgBufSize, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE); // 7.2.Stream Start Strm_Start(s_hStrm); // 8.Execute software trigger in SoftwareTrigger mode by 'SoftwareTrigger'. dat = 8;Cam_WriteReg(s_hCam, 0x2070DC, 1, &dat); // SoftwareTrigger // 9.Receive Image uint32_t uiSize = s_uiImgBufSize; CAM_IMAGE_INFO sImageInfo; for(int i=0; i<3; i++) WaitForSingleObject(s hStrmEvt, 1000); Strm_ReadCurrentImage(s_hStrm, s_pucImgBuf, &uiSize, &sImageInfo); } // 10.Stop and Close image stream. // 10.1.Stream Stop Strm_Stop(s_hStrm); // 10.2.Close Stream Strm_Close(s_hStrm); CloseHandle(s_hStrmEvt); VirtualFree(s_pucImgBuf, 0, MEM_RELEASE);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

TriggerAdditional Parameter	Raw Value = Absolute (Float) Value
Minimum	0
Maximum	255
Initial Value	0

TriggerDelay	Raw Value	Absolute (Float) Value
Minimum	0	0.0 [us]
Maximum	25000000	2000000.0 [us]
Initial Value	0	0.0 [us]
Formula	Absolute Value [u	is] = Raw Value / 125

Note

In SoftwareTrigger operation, the delay time from 'TriggerSoftware' to exposure is not guaranteed.

BU series and BG series have different hardware trigger source.

Please refer to 'I/O Specification' section as well.

TriggerSource	Description
Line0 (*)	I/O connector : 4 pin, High level 2.0 to 24.0V
Line2	I/O connector : 1 pin, High level 4.0 to 5.0V

* initial factory setting

TriggerDelay is applied to both of HardwareTrigger and SoftwareTrigger.

TriggerAdditionalParameter is only effective in Bulk mode.

ExposureTime

ExposureTime controls the duration where the image sensor is exposed to light. This camera series provides three kinds of exposure time control mode.

- NoSpecify : The exposure time is determined by 'AcquisitionFrameRate' register setting value
- Manual : The exposure time is determined by 'ExposureTime' register setting value.

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
ExposureTime	IFloat	4	R/W	Sets an exposure time.

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
ExposureTime	Implemented	0x204020	[31]	R	Returns the state whether the function is implemented.
	Control	0x204028	4	R/W	[0]: NoSpecify
					[1]: Manual
	Mult	0x20402C	4	R	Absolute Velue [cool - Row * (Mult / Div)
	Div	0x204030	4	R	Absolute value [sec] = Raw (Mult / Div)
	Min	0x204034	4	R	Returns the minimum value of ExposureTime Value register.
	Max	0x204038	4	R	Returns the maximum value of ExposureTime Value register.
	Value	0x20403C	4	R/W	Sets Time value. (Raw value)

Control with TeliCamSDK

Camera feature API

Control ExposureTime using dedicated API.

API name	Description
GetCamExposureTimeMinMax	Get minimum and maximum value
GetCamExposureTime	Get current ExposureTime value
SetCamExposureTime	Set new ExposureTime value
GetCamExposureTimeControl	Get current ExposureTime mode
SetCamExposureTimeControl	Set new ExposureTime mode

ExposureTimeControl parameter	Description
CAM_EXPOSURE_TIME_CONTROL_NO_SPECIFY	NoSpecify
CAM_EXPOSURE_TIME_CONTROL_MANUAL	Manual

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control ExposureTime using GenICam API.

ExposureTime

Sets an exposure time by 'ExposureTime'

```
// GenICam node handle
CAM_NODE_HANDLE hMode = NULL;
CAM_NODE_HANDLE hSelector = NULL;
CAM_NODE_HANDLE hSource = NULL;
// GenICam node handle
CAM_NODE_HANDLE hNode = NULL;
// ExposureTime = 1000us
float64_t dExposureTime = 1000.0;
// Retrieve GenICam node.
Nd_GetNode(s_hCam, "ExposureTime", &hNode);
// Set ExposureTime Value
Nd_SetFloatValue(s_hCam, hNode, dExposureTime);
```

Please refer to [INode functions], [IFloat node functions] and [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control Gain by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦ ExposureTime

Write to 'Value' field of 'ExposureTime' register.

// ExposureTime = 1000us (Raw value = 60000)
uint32_t uiExposureTimeRaw = 60000;
// Set ExposureTime Value
Cam_WriteReg(s_hCam, 0x20403C, 1, &uiExposureTimeRaw);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

ExposureTime	Raw Value	Absolute (Float) Value
Minimum	1800	30 [us]
Maximum	96000000	16000000 [us]
Initial Value	3000000	50000.00 [us]
Formula	Absolute Value [us] = Raw Value / 60	

DigitallOControl

This section describes DigitallOControl category for the BU series.

This camera provides GPIO output selected by the register setting. And the polarity of the signal is able to switch by the register setting. The following chart shows the specifications of the selectable signals.

GPIO internal circuit diagram

Details of each signal

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
LineMode	IEnumeration	4	R/W	Selects the Input / Output of each Line selected by LineSelector.
LineModeAll	IInteger	4	R/W	Selects the Input / Output of each Line.
LineInverter	IBoolean	4	R/W	Selects the polarity of each Line signal selected by LineSelector.
LineInverterAll	IInteger	4	R/W	Selects the polarity of each Line signal.
LineStatus	IBoolean	4	R	Returns the status of each Line signal selected by LineSelector.
LineStatusAll	IInteger	4	R	Returns the status of each Line signal.
UserOutputValue	IBoolean	4	R/W	Sets the user output value of each line selected by LineSelector.
UserOutputValueAll	IInteger	4	R/W	Sets the user output value of each Line.
LineSelector	IEnumeration	4	R/W	Selects the Line of I/O connector.
LineSource	IEnumeration	4	R/W	Selects the source of the output signal.

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
LineModeAll	Implemented	0x209020	[31]	R	Returns the state whether the function is implemented.
	BitWritable	0x20902C	4	R	[0]: Line0
					[1]: Line1
					[2]: Line2
	Value	0x209030	4	R/W	Selects the direction of each line signal.
LineInverterAll	Implemented	0x209040	[31]	R	Returns the state whether the function is implemented.
	Value	0x209050	4	R/W	Selects the inversion of I/O lines.
					Reflected both input and output buffers.
LineStatusAll	Implemented	0x209060	[31]	R	Returns the state whether the function is implemented.
	Value	0x209070	4	R	Returns the current status of all I/O lines.
UserOutputValueAll	Implemented	0x209080	[31]	R	Returns the state whether the function is implemented.
	Value	0x209090	4	R/W	Selects the output value.
LineSelector	Implemented	0x2090A0	[31]	R	Returns the state whether the function is implemented.
	Value	0x2090BC	4	R/W	Selects the I/O line to output LineSource.
LineSource	Implemented	0x2090C0	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x2090CC	4	R	[0] : Off
					[32] : UserOutput
					[64] : Timer0Active
					[99] : AcquisitionActive
					[106] : FrameTriggerWait
					[107] : FrameActive
					[115] : FrameTransferActive
					[123] : ExposureActive
	Value	0x2090DC	4	R/W	Selects the source signal.

• Control with TeliCamSDK

Camera feature API

Control DigitalIOControl using dedicated API.

API name	Description
GetCamLineModeAll	Get current LineMode
GetCamLineInverterAll	Get current LineInverter
SetCamLineInverterAll	Set new LineInverter
GetCamLineStatusAll	Get current LineStatus
GetCamUserOutputValueAll	Get current UserOutput
SetCamUserOutputValueAll	Set new UserOutput
GetCamLineSource	Get current LineSource
SetCamLineSource	Set new LineSource

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control DigitalIOControl using GenICam API.

◆LineModeAll

Selects the Input / Output of each Line by 'LineModeAll'.

Each bit of integer value corresponds to each Line (bit0=Line0(not changeable), bit1=Line1(not changeable), bit2=Line2).

bit value	I/O Direction
0	Input
1	Output

LineModeAll	bit value	I/O Direction		
Value	[Line2] [Line1] [Line0]	[Line2] [Line1] [Line0]		
0	pot l	lood		
1	not	not used		
2(*)	[0] [1] [0]	[in] [out] [in]		
3				
4	not	used		
5				
6	[1] [1] [0]	[out] [out] [in]		
7	not	used		

* initial factory setting

LineInverterAll

Selects the polarity of each Line signal by 'LineInverterAll'.

Each bit of integer value corresponds to each Line (bit0=Line0, bit1=Line1, bit2=Line2).

bit value	Inverter
0	False (not inverted)
1	True (inverted)

LineInverterAll	bit value	Inverter
Value	[Line2] [Line1] [Line0]	[Line2] [Line1] [Line0]
0(*)	[0] [0] [0]	[off] [off] [off]
1	[0] [0] [1]	[off] [off] [on]
2	[0] [1] [0]	[off] [on] [off]
3	[0] [1] [1]	[off] [on] [on]
4	[1] [0] [0]	[on] [off] [off]
5	[1] [0] [1]	[out [off] [on]
6	[1] [1] [0]	[on] [on] [off]
7	[1] [1] [1]	[on] [on] [on]

* initial factory setting

♦LineStatusAll

Gets the status of each Line signal by 'LineStatusAll'

Each bit of integer value corresponds to each Line (bit0=Line0, bit1=Line1, bit2=Line2).

bit value	Line Status
0	False(Low)
1	True(High)

LineStatusAll	bit value	Line Status
Value	[Line2] [Line1] [Line0]	[Line2] [Line1] [Line0]
0	[0] [0] [0]	[low] [low] [low]
1	[0] [0] [1]	[low] [low] [high]
2	[0] [1] [0]	[low] [high] [low]
3	[0] [1] [1]	[low] [high] [high]
4	[1] [0] [0]	[high] [low] [low]
5	[1] [0] [1]	[high] [low] [high]
6	[1] [1] [0]	[high] [high] [low]
7	[1] [1] [1]	[high] [high] [high]

UserOutputValueAll

Sets the user output value by 'UserOutputValueAll'.

Each bit of integer value corresponds to each Line (bit0=Line0(not used), bit1=Line1, bit2=Line2).

bit value	Output
0	False(Low)
1	True(High)

UserOutputValueAll	bit value	Output	
	[Line2] [Line1]	[Line2] [Line1]	
0 (*)	[0] [0]	[low] [low]	
1	[0] [0]		
2	[0] [1]	[low] [high]	
3	נטן נין		
4	[4] [0]		
5	[1][0]	[mgn] [iow]	
6	[4] [4]	[bigb] [bigb]	
7	['][']	[mgn] [mgn]	

♦ LineSelector

Selects the I/O line to output by 'LineSelector'.

Integer value and string value of Enumeration are as follows.

Integer	String
1	Line1
2	Line2

♦LineSource

XML node	Camera Register	Camera Internal Selector	Camera Internal Register
LineSelector	LineSelector		
		Line0	LineSource(Line0)
LineSource	LineSource	Line1	LineSource(Line1)
		Line2	LineSource(Line2)
		-	

Selects the source of the output signal.

Integer value and string value of Enumeration are as follows.

Integer	String	Description
0	Off	Off
32	UserOutput	Outputs the value set in 'UserOutputValueAll'.
64	Timer0Active	This signal can be used as strobe control signal.
		The delay time and pulse width of this signal are configurable.
99	AcquisitionActive	Indicates AcquisitionStart state of camera.
106	FrameTriggerWait	Indicates that camera is ready to accept trigger signal.
		(both hardware and software)
107	FrameActive	Period from exposure start to sensor read-out completion.
115	FrameTransferActive	Period of transferring image streaming data on interface bus.
123	ExposureActive	Period from exposure start to exposure end.

// GenICam node handle // Retrieve GenICam node. Nd_GetNode(s_hCam, "LineModeAll", &hMode); Nd_GetNode(s_hCam, "LineSelector", &hSelector); Nd_GetNode(s_hCam, "LineSource", &hSource); // Line2/Line1 = output, Line0 = input int64_t Mode = 6;Nd_SetIntValue(s_hCam, hMode, Mode); // Line1 = ExposureActive Nd_SetEnumStrValue(s_hCam, hSelector, "Line1"); Nd_SetEnumStrValue(s_hCam, hSource, "ExposureActive"); // Line2 = FrameTransferActive Nd_SetEnumStrValue(s_hCam, hSelector, "Line2"); Nd_SetEnumStrValue(s_hCam, hSource, "FrameTransferActive");

Please refer to [INode functions], [IInteger node functions], [IBoolean node functions] and [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control DigitallOControl by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

LineModeAll

Write to 'Value' field of 'LineModeAll' register.

LineInverterAll

Write to 'Value' field of 'LineInverterAll' register.

LineStatusAll

Read 'Value' field of 'LineStatusAll' register.

UserOutputValueAll

Write to 'Value' field of 'UserOutputAll' register.

LineSelector

Write to 'Value' field of 'LineSelector' register.

♦LineSource

Write to 'Value' field of 'LineSource' register.

```
// Line2/Line1 = output, Line0 = input
uint32_t uiMode = 6;
Cam_WriteReg(s_hCam, 0x209030, 1, &uiMode);
// Set Value
uint32_t
         uiSelector;
uint32_t
           uiSource;
uiSelector = 1; // Line1
uiSource = 123;
                  // ExposureActive
Cam_WriteReg(s_hCam, 0x2090BC, 1, &uiSelector);
Cam_WriteReg(s_hCam, 0x2090DC, 1, &uiSource);
uiSelector = 2; // Line2
uiSource = 115;// FrameTransferActive
Cam_WriteReg(s_hCam, 0x2090BC, 1, &uiSelector);
Cam_WriteReg(s_hCam, 0x2090DC, 1, &uiSource);
```

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Note

- Line0 is dedicated input.
- Line1 is dedicated output.
- Line2 is bi-directional. The default direction is input.

For [Timer0Active] signal, please refer to [TimerControl] Section for more detail.

AntiGlitch / AntiChattering

AntiGlitch and AntiChattering functions filter noise and unstable state of the digital input (trigger signal). AntiGlitch circuit performs the digital integration of the trigger signal.

It is effective to remove impulsive noise.

AntiChattering circuit sets the edge insensible time to avoid trigger malfunction.

It is effective to remove unstable logic state and switch-chattering.

Fig. AntiGlitch and AntiChattering

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
AntiGlitch	IFloat	4	R/W	Integration time of digital input signal. [sec]
AntiChattering	IFloat	4	R/W	Insensible time of digital input signal. [sec]

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
AntiGlitch	Implemented	0x21F3C0	[31]	R	Returns the state whether the function is implemented.
	Mult	0x21F3CC	4	R	Abashita Valus (asa) - Dow * (Mult / Div)
	Div	0x21F3D0	4	R	Absolute value [sec] = Raw (Mult / Div)
	Min	0x21F3D4	4	R	Returns the minimum value of AntiGlitch period.
	Max	0x21F3D8	4	R	Returns the maximum value of AntiGlitch period.
	Value	0x21F3DC	4	R/W	Sets the AntiGlitch period.(Raw value)
AntiChattering	Implemented	0x21F3E0	[31]	R	Returns the state whether the function is implemented.
	Mult	0x21F3EC	4	R	Abashita Valus (asa) - Dow * (Mult / Div)
	Div	0x21F3F0	4	R	Absolute value [sec] = Raw (Mult / Div)
	Min	0x21F3F4	4	R	Returns the minimum value of AntiGlitch period.
	Max	0x21F3F8	4	R	Returns the maximum value of AntiGlitch period.
	Value	0x21F3FC	4	R/W	Sets the AntiGlitch period.(Raw value)

• Control with TeliCamSDK

GenICam function API

Control AntiGlitch/AntiChattering using GenICam API.

AntiGlitch/AntiChattering

- 1. Set Integration time of digital input signal in [sec] to 'AntiGlitch'.
- 2. Set Insensible time of digital input signal in [sec] to 'AntiChattering'.

// GenlCam node handle CAM_NODE_HANDLE hGlitch = NULL; CAM_NODE_HANDLE hChattering = NULL; // AntiGlitch = 1.0[us], AntiChattering = 10.0[us] float64_t dGlitch = 0.000001; float64_t dChattering = 0.000010; // Retrieve GenlCam node. Nd_GetNode(s_hCam, "AntiGlitch", &hGlitch); Nd_GetNode(s_hCam, "AntiChattering", &hChattering); // Set Value Nd_SetFloatValue(s_hCam, hGlitch, dGlitch); Nd_SetFloatValue(s_hCam, hChattering, dChattering);

Please refer to [INode functions], [IFloat node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control AntiGlitch/AntiChattering by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

AntiGlitch/AntiChattering

- 1. Write to 'Value' field of 'AntiGlitch' register.
- 2. Write to 'Value' field of 'AntiChattering' register.

// AntiGlitch = 1.0[us] (Raw value = 100) // AntiChattering = 10.0[us] (Raw value = 1250) uint32_t uiAntiGlitchRaw = 100; uint32_t uiAntiChatteringRaw = 1250; // Set Value Cam_WriteReg(s_hCam, 0x21F3DC, 1, &uiAntiGlitchRaw); Cam_WriteReg(s_hCam, 0x21F3FC, 1, &uiAntiChatteringRaw);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

AntiGlitch	Raw Value	Absolute (Float) Value		
Minimum	9	0.09 [us]		
Maximum	200000	2000 [us]		
Initial Value	9	0.09 [us]		
Formula	Absolute Value [us] = Raw Value / 100			

AntiChattering	Raw Value	Absolute (Float) Value	
Minimum	249	1.992 [us]	
Maximum	249999	1999.992 [us]	
Initial Value	249	1.992 [us]	
Formula	Absolute Value [us] = Raw Value / 125		

TimerControl

This section describes TimerControl features.

This camera series is able to generate Timer0Active signal beginning from trigger or exposure start signal. This signal can be used as strobe control signal.

Timer0Active

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
TimerSelector	IEnumeration	4	R	Returns the selected timer name.
TimerDelay	IFloat	4	R/W	Sets the delay of Timer0Active signal.
TimerDuration	IFloat	4	R/W	Sets the duration of Timer0Active signal.
TimerTriggerSource	IEnumeration	4	R/W	Selects the source of Timer0Active pulse to start.

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
TimerSelector	Implemented	0x20A020	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20A02C	4	R	[0] : Timer0
	Value	0x20A03C	4	R/W	Returns the selected timer.
TimerDelay	Implemented	0x20A040	[31]	R	Returns the state whether the function is implemented.
	Mult	0x20A04C	4	R	- AbsoluteValue[sec] = Raw * (Mult / Div)
	Div	0x20A050	4	R	
	Min	0x20A054	4	R	Returns the minimum value of TimerDelay Value register.
	Max	0x20A058	4	R	Returns the maximum value of TimerDelay Value register.
	Value	0x20A05C	4	R/W	Sets Timer0Active delay time.(Raw value)
TimerDuration	Implemented	0x20A060	[31]	R	Returns the state whether the function is implemented.
	Mult	0x20A06C	4	R	AbsoluteValue[sec] = Raw * (Mult / Div)
	Div	0x20A070	4	R	
	Min	0x20A074	4	R	Returns the minimum value of TimerDuration Value register.
	Max	0x20A078	4	R	Returns the maximum value of TimerDuration Value register.
	Value	0x20A07C	4	R/W	Sets Timer0Active duration time.(Raw value)
TimerTriggerSource	Implemented	0x20A080	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20A08C	4	R/W	[0] : Off
					[32] : Line0
					[104] : FrameTrigger
					[124] : ExposureStart
	Value	0x20A09C	4	R/W	Selects the source of Timer0Active pulse to start.

• Control with TeliCamSDK

Camera feature API

Control TimerControl using dedicated API.

API name	Description
GetCamTimerDelayMinMax	Get minimum and maximum value
GetCamTimerDelay	Get current TimerDelay value
SetCamTimerDelay	Set new TimerDelay value
GetCamTimerDurationMinMax	Get minimum and maximum value
GetCamTimerDuration	Get current TimerDuration value
SetCamTimerDuration	Set new TimerDuration value
GetCamTimerTriggerSource	Get current TimerTriggerSource
SetCamTimerTriggerSource	Set new TimerTriggerSource

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.
GenICam function API

Control TimerControl using GenICam API.

TimerDelay/TimerDuration/TimerTriggerSource

- 1. Sets the delay of Timer0Active signal by 'TimerDelay'.
- 2. Sets the duration of TimerOActive signal by 'TimerDuration'.
- 3. Selects the source of Timer0Active pulse to start by 'TimerTriggerSource'.

Integer value and string value of Enumeration are as follows.

Integer	String	Description	
0	Off	DisablesTimer0Active signal.	
32	Line0	Starts when Line0 is active.	
104	FrameTrigger	Starts with the reception of the Frame Start Trigger.	
124	ExposureStart	Starts with the reception of the Exposure Start	

// GenICam node handle
CAM_NODE_HANDLE hDelay = NULL;
CAM_NODE_HANDLE hDuration = NULL;
CAM_NODE_HANDLE
// TimerDelay = 1000.0[us], TimerDuration = 2000.0[us]
float64_t dDelay = 1000.0;
float64_t dDuration = 2000.0;
// Retrieve GenICam node.
Nd_GetNode(s_hCam, "TimerDelay", &hDelay);
Nd_GetNode(s_hCam, "TimerDuration", &hDuration);
Nd_GetNode(s_hCam, "TimerTriggerSource", &hSource);
// 1.Sets the delay of Timer0Active signal.
Nd_SetFloatValue(s_hCam, hDelay, dDelay);
// 2.Sets the dulation of Timer0Active signal.
Nd_SetFloatValue(s_hCam, hDuration, dDuration);
// 3.Selects the source of Timer0Active pulse to start.
Nd_SetEnumStrValue(s_hCam, hSource, "ExposureStart");

Please refer to [INode functions], [IFloat node functions] and [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control TimerControl by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

TimerDelay/TimerDuration/TimerTriggerSource

- 1. Write to 'Value' field of 'TimerDelay' register.
- 2. Write to 'Value' field of 'TimerDuration' register.
- 3. Write to 'Value' field of 'TimerTriggerSource' register.

// TimerDelay = 1000.0[us] (Raw value = 125000)						
// TimerDuration = 2000.0[us] (Raw value = 250000)						
// TimerTriggersource = "ExposureStart"						
uint32_t uiTimerDelayRaw = 125000;						
uint32_t uiTimerDurationRaw = 250000;						
uint32_t uiTimerTriggerSource = 124;						
// Set Value						
Cam_WriteReg(s_hCam, 0x20A05C, 1, &uiTimerDelayRaw);						
Cam_WriteReg(s_hCam, 0x20A07C, 1, &uiTimerDurationRaw);						
Cam_WriteReg(s_hCam, 0x21F27C, 1, &uiTimerTriggerSource);						

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

TimerDelay TimerDuration	Raw Value	Absolute (Float) Value
Minimum	0	0 [us]
Maximum	25000000	2000000 [us]
Initial Value	0	0.00 [us]
Formula	Absolute Value [us] = Raw Value / 125	

Note

'TimerTriggerSource' operation is as follows,

LineOActive is available in Hardware Trigger mode, and to be responded to FrameTriggerError.

FrameTrigger is available in both Hardware Trigger and Software Trigger mode, and not to be responded to FrameTriggerError.

ExposureStart is available in both Hardware Trigger and Software Trigger mode, and not to be responded to FrameTriggerError. Timer0Active pulse delays TiggerDelay+TimerDelay[us].

<u>Gain</u>

This section describes Gain feature. This control adjusts an amplification factor applied to the output signal. Gain feature adjusts manual gain.

The formula of Gain value is as follows;

output signal = input signal x 10 ^ (Gain / 20)
Gain is in [dB] unit.

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
Gain	IFloat	4	R/W	Sets a manual Gain.

Register	Field	Address	Length Byte / [bit]	Access	Description
Gain	Implemented	0x204060	[31]	R	Returns the state whether the function is implemented.
	Control	0x204068	4	R/W	[1]: Manual
	Mult	0x20406C	4	R	Absolute Value [dB] = Raw * (Mult / Div)
	Div	0x204070	4	R	
	Min	0x204074	4	R	Returns the minimum value of Gain Value register.
	Max	0x204078	4	R	Returns the maximum value of Gain Value register.
	Value	0x20407C	4	R/W	Gain value. (Raw value)

Control with TeliCamSDK

Camera feature API

Control Gain using dedicated API.

API name	Description
GetCamGainMinMax	Get minimum and maximum value
GetCamGain	Get current Gain value
SetCamGain	Set new Gain value

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control Gain using GenICam API.

♦Gain

Use 'IFloat' interface to control Gain.

```
// GenICam node handle
CAM_NODE_HANDLE hNode = NULL;
// Gain = 6.0dB
float64_t dGain = 6.0;
// Retrieve GenICam node.
Nd_GetNode(s_hCam, "Gain", &hNode);
// Set Gain Value
Nd_SetFloatValue(s_hCam, hNode, dGain);
```

Please refer to [INode functions], [IFloat node functions] and [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control Gain by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦Gain

Write to 'Value' field of 'Gain' register.

// Gain = 6.0dB (Raw value = 60) uint32_t uiGainRaw = 60; // Set Gain Value Cam_WriteReg(s_hCam, 0x20407C, 1, &uiGainRaw);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

Gain	Raw Value	Absolute (Float) Value
Minimum	0	0.00 [dB]
Maximum	360	36.00 [dB]
Initial Value	0	0.00 [dB]
Formula	Absolute Value [d	dB] = Raw Value / 10

BlackLevel

This section describes BlackLevel feature. This control adjusts the black level applied to the output signal. It is adjustable from -25% to +25% as white saturation level is 100%.

If BlackLevel is set lower than 0[%], the image level may not be saturated.

Black Level

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
BlackLevel	IFloat	4	R/W	Black Level value.

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
BlackLevel	Implemented	0x204040	[31]	R	Returns the state whether the function is implemented.
	Mult	0x20404C	4	R	Abachite Value (9/1 - Dow * (Mult / Div)
	Div	0x204050	4	R	Absolute value [%] = Raw (Muit / Div)
	Min	0x204054	4	R	Returns the minimum value of Black Level Value register.
	Мах	0x204058	4	R	Returns the maximum value of Black Level Value register.
	Value	0x20405C	4	R/W	Black Level value. (Raw value)

Control with TeliCamSDK

Camera feature API

Control BlackLevel using dedicated API.

API name	Description
GetCamBlackLevelMinMax	Get minimum and maximum value
GetCamBlackLevel	Get current BlackLevel value
SetCamBlackLevel	Set new BlackLevel value

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control BlackLevel using GenICam API.

BlackLevel

Use 'IFloat' interface to control BlackLevel.

// GenICam node handle CAM_NODE_HANDLE hNode = NULL; // BlackLevel = 25% float64_t dBlackLevel = 25.0; // Retrieve GenICam node. Nd_GetNode(s_hCam, "BlackLevel", &hNode); // Set BlackLevel Value Nd_SetFloatValue(s_hCam, hNode, dBlackLevel);

Please refer to [INode functions] and [IFloat node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control BlackLevel by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

BlackLevel

Write to 'Value' field of 'BlackLevel' register.

// BlackLevel = 25% (Raw value = 256) int32_t iBlackLevelRaw = 256; // signed					
// Set BlackLevel Value Cam_WriteReg(s_hCam, 0x20405C, 1, &iBlackLevelRaw);					

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

Gain	Raw Value	Absolute (Float) Value		
Minimum	-256	-25.00[%]		
Maximum	256	+25.00[%]		
Initial Value	0	0.00[%]		
Formula	Absolute Value [%] = Raw Value * 100 / 102			

<u>Gamma</u>

This section describes Gamma feature. This control adjusts the gamma correction of pixel intensity.

• GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
Gamma	IFloat	4	R/W	Gamma value.

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
Gamma	Implemented	0x204080	[31]	R	Returns the state whether the function is implemented.
	Mult	0x20408C	4	R	Abachite Value - Dow * (Mult / Div)
	Div	0x204090	4	R	Absolute value = Raw ((viuit / Div)
	Min	0x204094	4	R	Returns the minimum value of Gamma Value register.
	Max	0x204098	4	R	Returns the maximum value of Gamma Value register.
	Value	0x20409C	4	R/W	Gamma value. (Raw value)

Control with TeliCamSDK

Camera feature API

Control Gamma using dedicated API.

API name	Description		
GetCamGammaMinMax	Get minimum and maximum value		
GetCamGamma	Get current Gamma value		
SetCamGamma	Set new Gamma value		

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control Gamma using GenICam API.

♦Gamma

Use 'IFloat' interface to control Gamma.

```
// GenICam node handle
CAM_NODE_HANDLE hNode = NULL;
// Gamma = 0.45
float64_t dGamma = 0.45;
// Retrieve GenICam node.
Nd_GetNode(s_hCam, "Gamma", &hNode);
// Set Gamma Value
Nd_SetFloatValue(s_hCam, hNode, dGamma);
```

Please refer to [INode functions] and [IFloat node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control Gamma by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦Gamma

Write to 'Value' field of 'Gamma' register.

```
// Gamma = 0.45 (Raw value = 45)
uint32_t uiGammaRaw = 45;
// Set Gamma Value
Cam_WriteReg(s_hCam, 0x20409C, 1, &uiGammaRaw);
```

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

Gain	Raw Value	Absolute (Float) Value
Minimum	45	0.45
Maximum	100	1.00
Initial Value	100	1.00
Formula	Absolute Value	= Raw Value / 100

BalanceRatio

This section describes BalanceRatio feature.

BalanceRatio control adjusts the white balance gain of the image.

BalanceWhiteAuto control adjusts white balance gain automatically.

This function is available only in Color models.

Fig. BalanceRatio

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
BalanceRatioSelector	IEnumeration	4	R/W	Selects a color component of white balance gain to control.
BalanceRatio	IFloat	4	R/W	Sets a white balance gain.
BalanceWhiteAuto	IEnumeration	4	R/W	Adjusts white balance gain automatically.

Register	Field	Address	Length Byte / [bit]	Access	Description
WhiteBalanceR	Implemented	0x205060	[31]	R	Returns the state whether the function is implemented.
	Control	0x205068	4	R/W	[1]: Off [3]: Once
	Mult	0x20506C	4	R	Abachite Value (fimes) - Dow * (Mult / Div)
	Div	0x205070	4	R	Absolute value [times] = Raw (iviuit / Div)
	Min	0x205074	4	R	Returns the minimum value of WhiteBalanceR Value register.
	Мах	0x205078	4	R	Returns the maximum value of WhiteBalanceR Value register.
	Value	0x20507C	4	R/W	White balance Red gain (Raw value)
WhiteBalanceB	Implemented	0x205080	[31]	R	Returns the state whether the function is implemented.
	Control	0x205088	4	R/W	[1]: Off [3]: Once
	Mult	0x20508C	4	R	
	Div	0x205090	4	R	Absolute value [times] = Raw (iviuit / Div)
	Min	0x205094	4	R	Returns the minimum value of WhiteBalanceB Value register.
	Max	0x205098	4	R	Returns the maximum value of WhiteBalanceB Value register.
	Value	0x20509C	4	R/W	White balance Blue gain (Raw value)

Control with TeliCamSDK

Camera feature API

Control BalanceRatio and BalanceWhiteAuto using dedicated API.

API name	Description
GetCamBalanceRatioMinMax	Get minimum and maximum value
GetCamBalanceRatio	Get current BalanceRatio value
SetCamBalanceRatio	Set new BalanceRatio value
GetCamBalanceWhiteAuto	Get current BalanceWhiteAuto mode
SetCamBalanceWhiteAuto	Set new BalanceWhiteAuto mode

BalanceWhiteAuto parameter	Description
CAM_BALANCE_WHITE_AUTO_OFF	Off
CAM_BALANCE_WHITE_AUTO_ONCE	Adjust once

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control BalanceRatio and BalanceWhiteAuto using GenICam API.

♦BalanceRatio

1. Select a color component of white balance gain to control by 'BalanceRatioSelector'.

Integer value and string value of Enumeration are as follows.

Integer	String
1	Red
2	Blue

2. Set a white balance gain by 'BalanceRatio'.

// GenICam node handle
CAM_NODE_HANDLE hNode = NULL;
// 1 Select a color component
// Petrieve CenlCam node
// Remeve Gemoann noue.
Nd_GetiNode(s_nCam, "BalanceRatioSelector, &nNode);
// Select "Red"
Nd_SetEnumStrValue(s_hCam, hNode, "Red");
// 2.Set a white balance gain
// white balance R gain = $x = 1.0$
float64 t dBalanceRatioR = 1.0:
$10d104_1$ $0Dalalicertation = 1.0,$
// Retrieve GeniCam node.
Nd_GetNode(s_hCam, "BalanceRatio", &hNode);
// Set Gain Value
Nd SetFloatValue(s hCam, hNode, dBalanceRatioR);

♦ BalanceWhiteAuto

Select 'BalanceWhiteAuto' mode by IEnumeration interface. Integer value and string value of Enumeration are as follows.

Integer	String
1	Off
3	Once

// GenICam node handle CAM_NODE_HANDLE hNode = NULL; // Retrieve GenICam node. Nd_GetNode(s_hCam, "BalanceWhiteAuto", &hNode); // Set BalanceWhiteAuto = "Once" Nd_SetEnumStrValue(s_hCam, hNode, "Once");

Please refer to [INode functions], [IEnumeration node functions] and [IFloat node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control BalanceRatio and BalanceWhiteAuto by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦BalanceRatio

Write to 'Value' field of 'WhiteBalanceR' or 'WhiteBalanceB' register.

// WhiteBalance R Gain = x 1 (Raw value = 65536) // WhiteBalance B Gain = x 1 (Raw value = 65536) uint32_t uiWhiteBalanceRRaw = 65536; uint32_t uiWhiteBalanceBRaw = 65536; // Set WhiteBalance Gain Value Cam_WriteReg(s_hCam, 0x20507C, 1, &uiWhiteBalanceRRaw); Cam_WriteReg(s_hCam, 0x20509C, 1, &uiWhiteBalanceBRaw);

♦BalanceRatioAuto

Write to 'Control' field of 'WhiteBalanceR' or 'WhiteBalanceB' register.

// BalanceWhiteAuto = "Once" uint32_t uiBalanceWhiteAuto = 3; // Set BalanceWhiteAuto = "Once" Cam_WriteReg(s_hCam, 0x205068, 1, &uiBalanceWhiteAuto); // Cam_WriteReg(s_hCam, 0x205088, 1, &uiBalanceWhiteAuto); // either will do

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

BalanceRatio	Raw Value	Absolute (Float) Value	
Minimum	65536	x 1 [times]	
Maximum	524287	x 8 [times]	
Initial Value	model specific model specific		
Formula	Absolute Value [times] = Raw Value / 65536		

Note

After executing BalanceWhiteAuto, the result will be reflected to BalanceRatio Red and Blue value.

Notes on white balance gain setting:

Too high white balance gain increases noises. After adjusting the white balance of the image, I ask you to have final image quality checked with your environment.

LUTControl

This function allows you to apply the arbitrary LUT(input: 12it, output: 12bit) to the output images.

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
LUTEnable	IBoolean	4	R/W	Sets the activation of LUT function.
LUTIndex	IInteger	4	R/W	Sets the input level of LUT.
LUTValue	IInteger	4	R/W	Sets the output level of LUT.

Register	Field	Address	Length Byte / [bit]	Access	Description
LUTEnable	Implemented	0x206020	[31]	R	Returns the state whether the function is implemented.
	Value	0x20603C	4	R/W	Sets the activation of LUT function. [0] : Off [1] : On
LUTValueAll	Implemented	0x2FFFDC	[31]	R	Returns the state whether the function is implemented.
	Value[0]	0x300000	4	R/W	Sets the output level of LUT.
	Value[1]	0x300004	4	R/W	Sets the output level of LUT.
	Value[2]	0x300008	4	R/W	Sets the output level of LUT.
	Value[4095]	0x303FFC	4	R/W	Sets the output level of LUT.

Control with TeliCamSDK

Camera feature API

Control LUT using dedicated API.

API name	Description
GetCamLUTEnable	Get activation status
SetCamLUTEnable	Set activation status
GetCamLUTValue	Get LUT value
SetCamLUTValue	Set LUT value

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control LUT using GenICam API.

♦LUT

- 1. Set the input level of LUT to 'LUTIndex'.
- 2. Set the output level of LUT to 'LUTValue'
- 3. Set the activation of LUT function by 'LUTEnable'

```
// GenICam node handle
CAM_NODE_HANDLE hIndex = NULL;
CAM_NODE_HANDLE hValue = NULL;
CAM_NODE_HANDLE hEnable = NULL;
// Retrieve GenICam node.
Nd_GetNode(s_hCam, "LUTIndex", &hIndex);
Nd_GetNode(s_hCam, "LUTValue", &hValue);
Nd_GetNode(s_hCam, "LUTEnable", &hEnable);
for(int64_t i=0; i<4096; i++)
{
   // 1.Set the input level of LUT to 'LUTIndex'.
   Nd_SetIntValue(s_hCam, hIndex, i);
   // 2.Set the output level of LUT to 'LUTValue'
   Nd_SetIntValue(s_hCam, hValue, 4095 - i); // invert
}
// 3.Set the activation of LUT function by 'LUTEnable'
Nd_SetBoolValue(s_hCam, hEnable, true);
```

Please refer to [INode functions], [IInteger node functions] and [IBoolean node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control LUT by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦LUT

1. Set the output level of LUT.

Write to 'Value[0]' to 'Value[4095]' of 'LUTValueAll' register to set the output level of LUT.

The index of 'Value' register means the input level of LUT.

2. Set the activation of LUT function.

Write to 'Value' field of 'LUTEnable' register to activate LUT function.

```
// 1.Set the output level of LUT.
uint64_t addr = 0x300000;
uint32_t dat;
for(int i=0; i<4096; i++, addr+= 0x4)
{
    dat = 4095 - i; // invert
    Cam_WriteReg(s_hCam, addr, 1, &dat);
}
// 2.Set the activation of LUT function.
dat = 1;
Cam_WriteReg(s_hCam, 0x20603C, 1, &dat);
```

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

LUTIndex/LUTValue	Value
Minimum	0
Maximum	4095

UserSetControl

You are able to save a user setting to the non-volatile or volatile memory of the camera. There are 15 user memory channels for user setting.

By using user memory, you are able to restore frequent used settings at the time of next start-up.

The following table is the list of registers applied to "UserSetLoad"/"UserSetSave", "UserSetQuickSave".

Category	Register	Category	Register
ImageFormatControl	ImageFormatSelector	DigitallOControl	UserOutputValueAll
	Width		LineSelector
	Height		LineSource
	OffsetX		AntiGlitch
	OffsetY		AntiChattering
	Binning	TimerControl	TimerTriggerSource
	Decimation		TimerDuration
	Reverse		TimerDelay
	PixelFormat	AnalogControl	Gain
	TestPattern		GainControl
AcquisitionControl	AcquisitionFrameRateEnable		BlackLevel
AcquisitionFrameRate			Gamma
	AcquisitionFrameIntervalControl		BalanceRatio
	AcquisitionFrameInterval		BalanceWhiteAuto
TriggerControl	TriggerMode	LUTControl	LUTEnable
	TriggerSequence	EventControl	EventNotification
	TriggerSource	DPCControl	DPCEnable(*)
	TriggerAdditionalParameter		DPCNumber(*)
	TriggerDelay		DPCEntryX(*)
ExposureControl	ExposureTime		DPCEntryY(*)
	ExposureControl	SequentialShutterControl	SequentialShutterEnable(*)
DigitallOControl	LineModeAll		SequentialShutterTerminateAt(*)
LineInverterAll			SequentialShutterEntry(*)

Table: List of registers to be applied to UserSet

(*) DPC and SequentialShutter entries are stored to a single channel. Entries are shared with all channels.

This table lists all features of B/W and Color models. Please refer to [Table : supported features list] as well.

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
UserSetSelector	IEnumeration	4	R/W	Selects a channel of user setting.
UserSetLoad	ICommand	4	W	Loads a user setting.
UserSetSave	ICommand	4	W	Saves a user setting to non-volatile memory.
UserSetQuickSave	ICommand	4	W	Saves a user setting to volatile memory.
UserSetDefault	IEnumeration	4	R/W	Selects a channel of user setting when camera powers up.

Register	Field	Address	Length Byte / [bit]	Access	Description
UserSetSelector	Implemented	0x208060	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20806C	4	R	[0] : Default
					[1] : UserSet1
					[15] : UserSet15
	Value	0x20807C	4	R/W	Selects the UserSet.
UserSetCommand	Implemented	0x208080	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x20808C	4	R	[0] : Done
					[8] : Load
					[9] : Save
					[120] : QuickSave
	Value	0x20809C	4	R/W	Selects the UserSet command.
UserSetDefault	Implemented	0x2080A0	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x2080AC	4	R	[0] : Default
					[1] : UserSet1
					[15] : UserSet15
	Value	0x2080BC	4	R/W	Selects the number of UserSet when the camera starts up.

Control with TeliCamSDK

Camera feature API

Control UserSetControl using dedicated API.

API name	Description
ExecuteCamUserSetLoad	Execute UserSetLoad
ExecuteCamUserSetSave	Execute UserSetSave
ExecuteCamUserSetSaveAndSetDefault	Execute UserSetDefault

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control UserSetControl using GenICam API.

UserSetLoad/UserSetSave/UserSetQuickSave

1. Select a channel of user setting by 'UserSetSelector'.

Integer value and string value of Enumeration are as follows.

Integer	String	Description	Save	Load
0	Default	Initial factory setting.	-	1
1~15	UserSet1~15	Memory channel 1 to 15 for user setting.	1	1
		- DPC feature is enabled		

2. Execute UserSetLoad, UserSetSave or UserSetQuickSave

When execute 'UserSetLoad', the camera loads user setting from the channel selected in 'UserSetSelector' register and applies them.

When execute 'UserSetSave' or 'UserSetQuickSave', the camera saves user setting to the channel selected in 'UserSetSelector' register.

After execution of 'UserSetSave', wait until 'UserSetSave' completion by Nd_GetCmdIsDone.

```
// GenICam node handle
CAM_NODE_HANDLE hSelector = NULL;
CAM_NODE_HANDLE hSave = NULL;
// Retrieve GenlCam node.
Nd_GetNode(s_hCam, "UserSetSelector", &hSelector);
Nd_GetNode(s_hCam, "UserSetSave", &hSave);
// 1.Select a channel of user setting by 'UserSetSelector'.
uint64_t dat = 1; // UserSet1
Nd_SetEnumIntValue(s_hCam, hSelector, dat);
// 2. Execute UserSetSave
Nd_CmdExecute(s_hCam, hSave);
bool8_t bDone;
while(1) {
 Nd_GetCmdIsDone(s_hCam, hSave, &bDone);
 if(bDone == true)
  break;
 Sleep(0);
```

UserSetDefault

Select a channel of user setting when camera powers up by 'UserSetDefault'.

Integer value and string value of Enumeration are as follows.

Integer	String	Description			
0	Default	Initial factory setting.			
1~15	UserSet1~15	Memory channel 1 to 15 for user setting.			

```
// GenICam node handle
CAM_NODE_HANDLE hSelector = NULL;
// Retrieve GenICam node.
Nd_GetNode(s_hCam, "UserSetDefault", &hSelector);
// 1.Select a channel of user setting when camera powers up by 'UserSetDefault'.
uint64_t dat = 1; // UserSet1
Nd_SetEnumIntValue(s_hCam, hSelector, dat);
```

Please refer to [INode functions], [IEnumeration node functions] and [ICommand node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control UserSetControl by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

UserSetLoad/UserSetSave/UserSetQuickSave

1. Select a channel of user setting by 'UserSetSelector'.

Write to 'Value' field of 'UserSetSelector' register.

2. Execute UserSetLoad, UserSetSave or UserSetQuickSave

Write [8] to 'Value' field of 'UserSetCommand' register to execute UserSetLoad.

Write [9] to 'Value' field of 'UserSetCommand' register to execute UserSetSave.

Write [120] to 'Value' field of 'UserSetCommand' register to execute UserSetQuickSave.

After execution of 'UserSetSave', wait until 'UserSetCommand' is 'Done' (= 0).

```
uint32_t dat;
// 1.Select a channel of user setting by 'UserSetSelector'.
dat = 1; // UserSet1
Cam_WriteReg(s_hCam, 0x20807C, 1, &dat);
// 2. Execute UserSetSave
dat = 9; // UserSetSave
Cam_WriteReg(s_hCam, 0x20809C, 1, &dat);
while(1) {
Cam_ReadReg(s_hCam, 0x20809C, 1, &dat);
if(dat == 0)
break;
Sleep(0);
}
```

UserSetDefault

1. Select a channel of user setting when camera powers up by 'UserSetDefault'.

// 1.Select a channel of user setting when camera powers up uint32_t dat = 1; // UserSet1 Cam_WriteReg(s_hCam, 0x2080BC, 1, &dat);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

EventControl

Camera notifies FrameTrigger status and other information by USB3 Vision Event Packet.

- FrameTrigger : Reception of Frame Start Trigger
- FrameTriggerError : Rejection of Frame Start Trigger
- FrameTriggerWait : Start of waiting for Frame Start Trigger
- FrameTransferStart : Start of transferring streaming data
- FrameTransferEnd : End of transferring streaming data
- ExposureStart : Start of Exposure
- ExposureEnd : End of Exposure
- Timer0Start : Start of Timer0
- Timer0End : End of Timer0

Events timing are as following chart.

(1) FrameTrigger : Reception of Frame Start Trigger. (2) FrameTriggerError : Rejection of Frame Start Trigger. (3) FrameTriggerWait : Start of waiting for Frame Start Trigger. (4) FrameTransferStart : Start of transferring streaming data. (5) FrameTransferEnd : End of transferring streaming data. (6) ExposureStart : Start of Exposure. (7) ExposureEnd

- : End of Exposure.
- (8) Timer0Start : Start of Timer0. (9) Timer0End
 - : End of Timer0.

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
EventSelector	IEnumeration	4	R/W	Selects which Event to signal to the host application.
EventNotification	IEnumeration	4	R/W	Sets the activation of event notification

Event Name	Event ID	Event Data	Length Byte / [bit]	Description
EventFrameTrigger	0x8020	EventFrameTriggerTimestamp	8	Returns the timestamp at the time of Event.
EventFrameTriggeError	0x8021	EventFrameTriggerErrorTimestamp	8	Returns the timestamp at the time of Event.
EventFrameTriggeWait	0x8022	EventFrameTriggerWaitTimestamp	8	Returns the timestamp at the time of Event.
EventFrameTransferStart	0x8030	EventFrameTransferStartTimestamp	8	Returns the timestamp at the time of Event.
EventFrameTransferEnd	0x8031	EventFrameTransferEndTimestamp	8	Returns the timestamp at the time of Event.
EventExposureStart	0x8040	EventExposureStartTimestamp	8	Returns the timestamp at the time of Event.
EventExposureEnd	0x8041	EventExposureEndTimestamp	8	Returns the timestamp at the time of Event.
EventTimer0Start	0x9000	EventTimer0StartTimestamp	8	Returns the timestamp at the time of Event.
EventTimer0End	0x9001	EventTimer0EndTimestamp	8	Returns the timestamp at the time of Event.

Register	Field	Address	Length Byte / [bit]	Access	Description
EventNotificationOfFrame	Implemented	0x21F220	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x21F22C	4	R	[0] : FrameTrigger
					[1] : FrameTriggerError
					[2] : FrameTriggerWait
					[3] : FrameStart
					[4] : FrameEnd
					[16] : FrameTransferStart
					[17] : FrameTransferEnd
	Value	0x21F230	4	R/W	Sets the activation of event notification of frame.
EventNotificationOfExposure	Implemented	0x21F240	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x21F24C	4	R	[0] : ExposureStart
					[1] : ExposureEnd
	Value	0x21F250	4	R/W	Selects the UserSet command.
EventNotificationOfTimerStart	Implemented	0x21F380	[31]	R	Sets the activation of event notification of exposure.
	ListOfElements	0x21F38C	4	R	[0] : Timer0Start
	Value	0x21F390	4	R/W	Sets the activation of event notification of timer start.
EventNotificationOfTimerEnd	Implemented	0x21F3A0	[31]	R	Sets the activation of event notification of exposure.
	ListOfElements	0x21F3AC	4	R	[0] : Timer0End
	Value	0x21F3B0	4	R/W	Sets the activation of event notification of timer end.

• Control with TeliCamSDK

Camera feature API

Control Event features using dedicated API.

API name		Description
High-level API functions	Evt_OpenSimple	Opens event interface
	Evt_Activate	Activates specified camera event.
	Evt_Deactivate	Deactivates specified camera event.
Low-level API functions	Evt_Open	Opens event interface
	Evt_CreateRequest	Creates EventRequest structure
	Evt_ReleaseRequest	Releases EventRequest structure
	Evt_EnqueueRequest	Puts specified EventRequest into the
		EventWaitQueue
	Evt_DequeueRequest	Retrieves an EventRequest structure from the
		EventCompleteQueue
	Evt_FlushWaitQueue	Stops all CameraEvent receiving operations, and
		moves all EventRequest structures in the
		EventWaitQueue to the EventCompleteQueue
Common functions	Evt_Close	Closes event interface

Please refer to [Camera event notification functions] in [TeliCamAPI Library manual] and [GrabEvent] sample code in your TeliCamSDK install folder.

GenICam function API

Please use dedicated API to control Event features.

Register access API

Please use dedicated API to control Event features.

FrameSynchronization

Selects the camera frame synchronization method.

- 1. Off : Free run operation (internal sync mode)
- 2. Bus

: Synchronized with USB bus clock (Bus Sync mode)

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
FrameSynchronization	IEnumeration	4	R/W	Selects the camera frame synchronization method.

Register	Field	Address	Length Byte / [bit]	Access	Description
FrameSynchronization	Implemented	0x21F020	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x21F02C	16	R	[0] : Off
					[1] : Bus
	Value	0x21F03C	4	R/W	Selects the camera frame synchronization method.

• Control with TeliCamSDK

GenICam function API

Control FrameSynchronization using GenICam API.

♦FrameSynchronization

Select a frame synchronization method.

Integer value and string value of Enumeration are as follows.

Integer	String	Description
0	Off	Internal synchronization
1	Bus	Bus synchronization

// GenICam node handle CAM_NODE_HANDLE hNode = NULL; // Retrieve GenICam node. Nd_GetNode(s_hCam, "FrameSynchronization", &hNode); // Select a frame synchronization method Nd_SetEnumStrValue(s_hCam, hNode, "Bus");

Please refer to [INode functions], [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control FrameSynchronization by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦ FrameSynchronization

Write to 'Value' field of 'FrameSynchronization register.

// Select a frame synchronization method uint32_t dat = 1; Cam_WriteReg(s_hCam, 0x21F03C, 1, &dat); // Bus Sync mode

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

LEDIndicatorLuminance

Adjusts LED indicator luminance.

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
LEDIndicatorLuminance	IFloat	4	R/W	Sets the LED indicator luminance.

Register	Field	Address	Length Byte / [bit]	Access	Description
LEDIndicatorLuminance	Implemented	0x21F100	[31]	R	Returns the state whether the function is implemented.
	Mult	0x21F10C	4	R	Abashita Valus [0/] Dow * (Mult / Div)
	Div	0x21F110	4	R	Absolute value [%] = Raw (Mult / Div)
	Min	0x21F114	4	R	Returns the minimum value of LED indicator luminance register.
	Max	0x21F118	4	R	Returns the maximum value of LED indicator luminance register.
	Value	0x21F11C	4	R/W	Sets the LED indicator luminance

• Control with TeliCamSDK

GenICam function API

Control LED indicator luminance using GenICam API.

◆LEDIndicatorLuminance

Use 'IFloat' interface to control LED indicator luminance.

// GenICam node handle CAM_NODE_HANDLE hNode = NULL; // luminance = 50[%] // actual value (4/7)*100 = 57.14[%] float64_t dLuminance = 50.0; // Retrieve GenICam node. Nd_GetNode(s_hCam, "LEDIndicatorLuminance", &hNode); // Set LED indicator luminance Value Nd_SetFloatValue(s_hCam, hNode, dLuminance);

Please refer to [INode functions], [IFloat node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control LED indicator luminance by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

◆LEDIndicatorLuminance

Write to 'Value' field of 'LEDIndicatorLuminance' register.

// luminance = 50[%] (Raw value = 4)
// actual value (4/7)*100 = 57.14[%]
uint32_t uiLuminanceRaw = 4;
// Set LED indicator luminance Value
Cam_WriteReg(s_hCam, 0x21F11C, 1, &uiLuminanceRaw);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

LEDIndicatorLuminance	Raw Value	Absolute (Float) Value
Minimum	0	0.00 [%]
Maximum	7	100.00 [%]
Initial Value	7	100.00 [%]
Formula	Absolute Value	[%] = Raw Value / 7

DPCControl

This DPC (Defective Pixel Correction) function corrects defective pixels from the image sensor. Specifying X and Y coordinates of the defective pixels, the defective pixels are corrected by calculation from the neighboring pixels.

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
DPCEnable	IEnumeration	4	R/W	Sets the activation of DPC function.
DPCNumber	IInteger	4	R/W	Sets the number of pixels to correct.
DPCIndex	IInteger	4	R/W	Sets the index number for entry.
DPCEntryX	IInteger	4	R/W	Sets the X coordinate of defective pixel.
DPCEntryY	IInteger	4	R/W	Sets the Y coordinate of defective pixel.

Register	Field	Address	Length Byte / [bit]	Access	Description
DPCEnable	Implemented	0x21F280	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x21F28C	4	R	[0] : Off
					[1] : On
	Value	0x21F29C	4	R/W	Sets the activation of DPC function.
DPCNumber	Implemented	0x21F2A0	[31]	R	Returns the state whether the function is implemented.
	Value	0x21F2BC	4	R/W	Sets the number of Pixels to correct.
DPCCoord	Value[0][0]	0x400000	4	R/W	Sets the first X coordinate of defective pixel.
	Value[0][1]	0x400004	4	R/W	Sets the first Y coordinate of defective pixel.
	Value[1][0]	0x400008	4	R/W	Sets the second X coordinate of defective pixel.
	Value[1][1]	0x40000C	4	R/W	Sets the second Y coordinate of defective pixel.
	Value[255][0]	0x4007F8	4	R/W	Sets the 255th X coordinate of defective pixel.
	Value[255][1]	0x4007FC	4	R/W	Sets the 255th Y coordinate of defective pixel.

• Control with TeliCamSDK

GenICam function API

Control DPC using GenICam API.

♦DPC

- 1. Set the coordinates of defective pixels by 'DPCIndex', 'DPCEntryX' and 'DPCEntryY'.
- 2. Sets the number of pixels to correct to 'DPCNumber'.
- 3. Sets the activation of DPC function by 'DPCEnable'.

Integer value and string value of Enumeration are as follows.

Integer	String
0	Off
1	On

// GenICam node handle
CAM_NODE_HANDLE hIndex = NULL;
CAM_NODE_HANDLE
CAM_NODE_HANDLE hEntryY = NULL;
CAM_NODE_HANDLE hNumber = NULL;
CAM_NODE_HANDLE hEnable = NULL;
// Retrieve GeniCam node.
Nd_GetNode(s_nuam, DPCIndex, &nindex);
Nd_GetNode(s_nCam, DPCEntryX, &nEntryX);
Nd_GetNode(s_hCam, DPCEntryY, anentryY),
Nd_GetNode(s_hCam, DPCFnable, & hCable);
INd_Getinode(5_IICalli, DFCEIIable, &IIEliable),
int64_t_entry[2][2] = {{100_200} {150_300}}// {x_v}
$int64 ext{ t number:}$
for(number=0; number<2; number++)
{
// 1.Set the coordinates of defective pixels by 'DPCIndex', 'DPCEntryX' and
'DPCEntryY'.
Nd_SetIntValue(s_hCam, hIndex, number); // 0 origin
Nd_SetIntValue(s_hCam, hEntryX, entry[number][0]);
Nd_SetIntValue(s_hCam, hEntryY, entry[number][1]);
}
// 2.Sets the number of pixels to correct to 'DPCNumber'.
Nd_SetIntValue(s_hCam, hNumber, number); // 2 pixels are to be corrected.
1/2 Octo the activation of DDO function by IDDOEs shipt
// 3.Sets the activation of DPC function by "DPCEhable".
Nu_SelEnumSil value(s_nCam, nEnable, On);

Please refer to [INode functions], [IInteger node functions] and [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control DPC by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

♦DPC

1. Set the coordinates of defective pixels.

Write to 'Value[index][0]' and 'Value[index][1]' field of 'DPCCoord' register.

The first index of 'Value' register indicates defective pixel number.

The second index of [0] and [1] correspond to X and Y coordinates.

2. Sets the number of pixels to correct.

Write to 'Value' field of 'DPCNumber' register.

3. Sets the activation of DPC function.

Write [1] to 'Value' field of 'DPCEnable' register.

<pre>// 1.Set the coordinates of defective pixels. uint32_t entry[2][2] = {{100,200},{150,300}}; // {x.y} uint32_t number; uint64_t addr = 0x400000; for(number=0; number<2; number++, addr+= 0x8) {</pre>
Cam_WriteReg(s_hCam, addr , 1, &entry[number][0]); Cam_WriteReg(s_hCam, addr+0x4, 1, &entry[number][1]); }
// 2.Sets the number of pixels to correct. Cam_WriteReg(s_hCam, 0x21F2BC, 1, &number);
// 3.Set the activation of DPC function. uint32_t dat = 1; Cam_WriteReg(s_hCam, 0x21F29C, 1, &dat);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

	DPCNumber	DPCIndex
Minimum	0	0
Maximum	256	255

	DPCEntryX	DPCEntryY
Minimum	0	0
Maximum	WidthMax-1	HeightMax-1

<u>Chunk</u>

This section describes Chunk feature. Chunk data means tagged blocks of data.

The tags allow a chunk parser to dissect the data payload into its elements and to identify the content. The length of a frame varies depending on the number of activated chunks.

Chunk Data Structure

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
ChunkModeActive	IBoolean	4	R/W	Sets the activation of Chunk function.
ChunkSelector	IEnumeration	4	R/W	Select which Chunk to enable or control.
ChunkEnable	IBoolean	4	R/W	Enables the inclusion of the selected Chunk data in the payload of
				the image.
ChunkUserAreaLength	IInteger	4	R	Indicates the length of ChunkUserAreaTable.
ChunkUserAreaTable	IString	256	R/W	Set the free user space.(Maximum:256byte)
ChunkFrameID	IInteger	8	R	Returns the Block ID of the frame included in the Chunk data.
ChunkExposureTime	IFloat	4	R	Returns the ExposureTime of the frame included in the Chunk data.
ChunkGain	IFloat	4	R	Returns the Gain of the frame included in the Chunk data.
ChunkWhiteBalanceR	IFloat	4	R	Returns the WhiteBalanceR of the frame included in the Chunk
				data.
ChunkWhiteBalanceB	IFloat	4	R	Returns the WhiteBalanceB of the frame included in the Chunk
				data.
ChunkLineStatusAll	IInteger	4	R	Returns the LineStatusAll of the frame included in the Chunk data.
ChunkFrameBurstTriggerCount	IInteger	4	R	Returns the FrameBurstTriggerCount of the frame included in the
				Chunk data.
ChunkSequentialShutterNumber	IInteger	4	R	Returns the SequentialShutterNumbere of the frame included in the
				Chunk data.
ChunkSequentialShutterElement	IInteger	4	R	Returns the SequentialShutterElement of the frame included in the
				Chunk data.

Register	Field	Address	Length Byte / [bit]	Access	Description
ChunkModeActive	Implemented	0x21D020	[31]	R	Returns the state whether the function is implemented.
	BitWritable	0x21D02C	4	R	[0]:Off
					[1]:On
	Value	0x21D030	4	R/W	Sets the activation of chunk feature.
ChunkEnableOfVendorSpecific	Implemented	0x21D040	[31]	R	Returns the state whether the function is implemented.
	BitWritable	0x21D04C	4	R	[0] : BlockID
					[8] : FrameBurstTriggerCount
					[9] : SequentialShutterNumber
					[10] : SequentialShutterElement
					[24] : UserArea
	Value	0x21D050	4	R/W	Sets the activation of chunk data.
ChunkEnableOfCat4	Implemented	0x21D0E0	[31]	R	Returns the state whether the function is implemented.
	BitWritable	0x21D0EC	4	R	[0] : ExposureTime
					[2] : Gain
	Value	0x21D0F0	4	R/W	Sets the activation of chunk data.
ChunkEnableOfCat5	Implemented	0x21D100	[31]	R	Returns the state whether the function is implemented.
	BitWritable	0x21D10C	4	R	[2] : WhiteBalaceR
					[3] : WhiteBalaceB
	Value	0x21D110	4	R/W	Sets the activation of chunk data.
ChunkEnableOfCat9	Implemented	0x21D180	[31]	R	Returns the state whether the function is implemented.
	BitWritable	0x21D18C	4	R	[2] : LineStatusAll
	Value	0x21D190	4	R/W	Sets the activation of chunk data.
ChunkUserArea	Implemented	0x21D7F0	[31]	R	Returns the state whether the function is implemented.
	NumberOfElements	0x21D7FC	[30:0]	R	Returns the length (in bytes) of ChunkUserArea Value.
	Value[0]	0x21D800	length	R/W	Sets the ASCII string of ChunkUserArea.
	Value[last]	0x21D800		R/W	Sets the ASCII string of ChunkUserArea.
		+NumberOf			
		Elements			
		-4			

Control with TeliCamSDK Camera feature API

Control ExposureTime using dedicated API.

API name	Description
GetCamChunkModeActive	Get current statusof chunk data output mode
SetCamChunkModeActive	Set chunk data output mode

Please refer to [Controlling camera feature functions] in [TeliCamAPI Library manual] for more detail.

GenICam function API

Control Chunk using GenlCam API.

Chunk

- 1. Close image stream.
- 2. Sets the activation of Chunk feature by 'ChunkModeActive'.
- 3. Sets the activation of Chunk data by 'ChunkSelector' and 'ChunkEnable'.

Most of the Chunk data has been fixed to output.

- 4. Sets the user string to 'ChunkUserAreaTable'. (optional)
- 5. Open image stream.
- 6. Capture image stream.

TeliCamAPI provides streaming functions including command handling and buffer handling to capture image stream simply.

Please refer to [Camera streaming functions] in [TeliCamAPI Library manual]

and [GrabStreamSimple] sample code in your TeliCamSDK install folder.

- 7. Extract Chunk data using GenICam API.
 - 7-1. Allocate memory by 'Chunk_AttachedBuffer' .
 - 7-2. Read Chunk data.

// GenICam node handle
CAM_NODE_HANDLE hMode = NULL;
CAM_NODE_HANDLE hSelector = NULL;
CAM_NODE_HANDLE hEnable = NULL;
CAM_NODE_HANDLE hFrameID = NULL;
CAM_NODE_HANDLE
CAM_NODE_HANDLE
// Retrieve GenICam node
Nd GetNode(s hCam "ChunkModeActive" &hMode):
Nd_GetNode(s_hCam_"ChunkSelector"_&hSelector)
Nd GetNode(s_hCam "ChunkEnable" &hEnable):
Nd GetNode(s_hCam, "ChunkFrameID", & hFrameID);
Nd GetNode(s hCam, "ChunkExposureTime", &hExposureTime):
Nd GetNode(s hCam, "ChunkUserAreaTable", &hUserAreaTable):
// 2.Activate ChunkModeActive
Nd_SetBoolValue(s_hCam, hMode, true);
//3 Enable ChunkSelector
Nd SetEnumStrl/alue(s hCam hSelector "ExposureTime")
Nd_SetBoolValue(s_hCam_hEnable_true):
Nd_SetEnumStr\/alue(s_hCam_hSelector_" UserArea")
Nd SetBoolValue(s hCam hEnable true):
// 4.Set the user string Nd_SetStrValue(s_hCam, hUserAreaTable, "Test"); // 5.6.Open and capture image Strm_ReadCurrentImage(hStrm, pvPayloadBuf, &uiPyldSize, &sImageInfo); // 7-1. Attach Buffer Chunk_AttachBuffer(s_hStrm, pvPayloadBuf, PyldSize) // 7-2.Get FrameID of Chunk data. int64 t fid= 0; Nd_GetIntValue(s_hCam, hFID, &fid); // 7-2.Get Exposure Time of Chunk data. float64 t exptime = 0; Nd_GetFloatValue(s_hCam, hExposureTime, &exptime); // 7-2.Get User Area data of Chunk data. char userarea[256]; Uint32_t uiSize = 256; Nd_GetStrValue(s_hCam, hUserAreaTable, &userarea, &uiSize);

Please refer to [INode functions], [IInteger node functions], [IBoolean node functions] and [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control Chunk by accessing IIDC2 registers directly.

API name	Description		
Cam_ReadReg	Read register value		
Cam_WriteReg	Write register value		

Chunk

- 1. Close image stream.
- 2. Sets the activation of Chunk feature.

Write to 'Value' field of 'ChunkModeActive' register.

3. Sets the activation of Chunk data.

Write to 'Value' field of 'ChunkEnableOfVendorSpecific', 'ChunkEnableOfCat4',

'ChunkEnableOfCat5' and 'ChunkEnableOfCat9' register.

4. Sets the user string. (optional)

Write to 'Value[0]' to 'Value[last]' field of 'ChunkUserArea' register.

- 5. Open image stream.
- 6. Capture image stream.

TeliCamAPI provides streaming functions including command handling and buffer handling to capture image stream simply.

Please refer to [Camera streaming functions] in [TeliCamAPI Library manual] and

[GrabStreamSimple] sample code in your TeliCamSDK install folder.

7. Extract Chunk data using GenICam API.

1	
	// 2.Activate ChunkModeActive
	int32_t active = 1;
	Cam_WriteReg(s_hCam, 0x21D030,1, &active);
	// 3.Enable Chunk int32_t cat4 = 5; Cam_WriteReg(s_hCam, 0x21D0F0,1, &cat4);
	// 5.6.Open and capture image Strm_ReadCurrentImage(hStrm, pvPayloadBuf, &uiPyldSize, &sImageInfo);
	// 7-1. Attach Buffer Chunk_AttachBuffer(s_hStrm, pvPayloadBuf, PyldSize)
	// 7-2.Get FrameID of Chunk data. int64_t fid= 0;
	Nd_GetIntValue(s_hCam, hFID, &fid);
	<pre>// 7-2.Get Exposure Time of Chunk data. float64_t exptime = 0; Nd CotEleatValue(c bCam bExposureTime & exptime);</pre>
	Nu_Gen loatvalue(s_noani, n∈xposure nnie, œxplinie),
	// 7-2.Get User Area data of Chunk data.
	char userarea[256];
	uint32_t uiSize = 256;
	Nd_GetStrValue(s_hCam, hUserAreaTable, &userarea, &uiSize);

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

SequentialShutterControl

Sequential Shutter function performs sequential capturing with applying the settings of UserSet that have been made entry in advance.

Sequential Shutter

GenlCam Node

Name	Interface	Length Byte / [bit]	Access	Description
SequentialShutterEnable	IEnumeration	4	R/W	Sets the activation of Sequential Shutter function.
SequentialShutterTerminateAt	IInteger	4	R/W	Sets the number of Index to repeat the sequence.
SequentialShutterIndex	IInteger	4	R/W	Sets the sequence number to register.
SequentialShutterEntry	IInteger	4	R/W	Sets the UserSet number to register to the sequence.

• IIDC2 Register

Register	Field	Address	Length Byte / [bit]	Access	Description
SequentialShutterEnable	Implemented	0x21F300	[31]	R	Returns the state whether the function is implemented.
	ListOfElements	0x21F30C	4	R	[0] : Off
					[1] : On
	Value	0x21F31C	4	R/W	Sets the activation of Sequential Shutter function.
SequentialShutterTerminateAt	Implemented	0x21F320	[31]	R	Returns the state whether the function is implemented.
	Value	0x21F33C	4	R/W	Sets the number of Tables to repeat the sequence.
SequentialShutterSequenceTabl	Value[0]	0x500040	4	R/W	Sets the UserSet number to register to the first
е					sequence.
	Value[1]	0x500044	4	R/W	Sets the UserSet number to register to the second
					sequence.
	Value[15]	0x500078	4	R/W	Sets the UserSet number to register to the 16 th
					sequence.

Control with TeliCamSDK

Camera feature API

Control SequentialShutter using dedicated API.

Description		
Get activation status		
Set activation status		
Get minimum and maximum value		
Get current SequentialShutterTerminateAt value		
Set new SequentialShutterTerminateAt value		
Get minimum and maximum value		
Get minimum and maximum value		
Get current SequentialShutterEntry value		
Set new SequentialShutterEntry value		

GenICam function API

Control SequentialShutter using GenICam API.

SequentialShutter

- 1. Set the camera parameters and save them to UserSet. Repeat this as you required.
- 2. Set the sequence number to register to 'SequentialShutterIndex' and Sets the UserSet number to register to the sequence to 'SequentialShutterEntry'. Repeat this as you required.
- 3. Set the number of Index to repeat the sequence to 'SequentialShutterTerminateAt'.
- 4. Set the activation of SequentialShutter function by 'SequentialShutterEnable'. Integer value and string value of Enumeration are as follows.

Integer	String		
0	Off		
1	On		

5. Capture image stream.

To start and stop capturing image is the same way as AcquisitionControl. Please refer to [Camera streaming functions] in [TeliCamAPI Library manual] and [GrabStreamSimple] sample code in your TeliCamSDK install folder. // 1.Set the camera parameters and save them to UserSet. ... // GenICam node handle CAM_NODE_HANDLE hIndex = NULL; CAM_NODE_HANDLE hEntry = NULL; CAM_NODE_HANDLE hTerminateAt = NULL; CAM_NODE_HANDLE hEnable = NULL; // Retrieve GenICam node. Nd_GetNode(s_hCam, "SequentialShutterIndex", &hIndex); Nd_GetNode(s_hCam, "SequentialShutterEntry", &hEntry); Nd_GetNode(s_hCam, "SequentialShutterTerminateAt", &hTerminateAt); Nd_GetNode(s_hCam, "SequentialShutterEnable", &hEnable); int64_t entry[] = $\{1, 4, 2\};$ // Sequence = {UserSet1,UserSet4,UserSet2} int64_t index; for(index=0; index<3; index++)</pre> // 2.Set SequentialShutterIndex and SequentialShutterEntry. Nd_SetIntValue(s_hCam, hIndex, index+1); // 1 origin Nd_SetIntValue(s_hCam, hEntry, entry[index]); // 3.Set SequentialShutterTerminateAt. Nd_SetIntValue(s_hCam, hTerminateAt, index); // 3 UserSet will be repeated. // 4.Set the activation of SequentialShutter function by 'SequentialShutterEnable'. Nd_SetEnumStrValue(s_hCam, hEnable, "On");

Please refer to [INode functions], [IInteger node functions] and [IEnumeration node functions] in [TeliCamAPI Library manual] for more detail.

Register access API

Control SequentialShutter by accessing IIDC2 registers directly.

API name	Description
Cam_ReadReg	Read register value
Cam_WriteReg	Write register value

- 1. Set the camera parameters and save them to UserSet. Repeat this as you required.
- 2. Sets the UserSet number to register to the sequence.

Write to 'Value[0]' to 'Value[15]' of 'SequentialShutterSequenceTable'.

The index of 'Value' register means sequence index. (0 origin)

3. Set the number of Index to repeat the sequence.

Write to 'Value' field of 'SequentialShutterTerminateAt'.

4. Set the activation of SequentialShutter function.

Write to 'Value' field of 'SequentialShutterEnable' register to activate LUT function.

5. Capture image stream.

To start and stop capturing image is the same way as AcquisitionControl. Please refer to [Camera streaming functions] in [TeliCamAPI Library manual] and [GrabStreamSimple] sample code in your TeliCamSDK install folder.

```
// 1.Set the camera parameters and save them to UserSet.
...
uint64_t addr = 0x500040;
uint32_t entry[] = {1,4,2}; // Sequence = {UserSet1,UserSet4,UserSet2}
uint32_t index, dat;
for(index=0; index<3; index++,addr+=4)
{
    // 2.Set SequentialShutterIndex and SequentialShutterEntry.
    Cam_WriteReg(s_hCam, addr, 1, &entry[index]);
}
// 3.Set SequentialShutterTerminateAt.
Cam_WriteReg(s_hCam, 0x21F33C, 1, &index); // 3 UserSet will be repeated.
// 4.Set the activation of SequentialShutter function.
dat = 1;
Cam_WriteReg(s_hCam, 0x21F31C, 1, &dat);</pre>
```

Please refer to [Camera functions] in [TeliCamAPI Library manual] for more detail.

Minimum/Maximum Value

SequentialShutterIndex	setting value
Minimum (*)	1
Maximum	16

* initial factory setting

SequentialShutterEntry	setting value
Minimum (*)	1
Maximum	15

* initial factory setting

• Note

The following table is the list of registers applied to "SequentialShutter".

Table: List of registers to be applied to SequentialShutter

	Category	Register	Category	Register
	ImageFormatControl	OffsetX	AnalogControl	Gain
		OffsetY		BlackLevel
	ExposureControl ExposureTime			Gamma
	DigitallOControl	UserOutputValueAll		BalanceRatio
		LineSource	LUTControl	LUTEnable
	CounterAndTimerControl	TimerDuration		
		TimerDelay		

Appendix

UserSetSave and UserSetQuickSave difference

If you want to change multiple Camera Settings (e.g. ROI setting) at once, UserSet feature is useful. Application needs to save the camera settings in UserSet memory in advance or in initialization stage. By **UserSetSave**, UserSet is stored to non-volatile flash memory.

It takes about **700ms** to execute UserSetSave because Non-volatile flash memory needs to be erased before writing. If you want to switch over multiple different settings in run time, overhead time of **UserSetSave** is inevitable.

By **UserSetQuickSave**, UserSet is stored to internal RAM. It takes less than **100us** in execution. It can reduce the overhead time of **UserSetSave** greatly.

You can also save UserSets to Serial Flash if necessary by UserSetSave.

MultiFrame and Bulk function difference

This section describes the difference between MultiFrame function of AcquisitionMode and Bulk function of TriggerSequence.

- MultiFrame function sets limits to the number of frames to transfer with AcquisitionFrameCount register.
- Bulk function sets limits to the number of frames to exposure with TriggerAdditionalParameter register.

- MultiFrame function in Normal Shutter mode (TriggerMode = Off)

Camera transfers "AcquisitionFrameCount" frame(s).

- MultiFrame function in Random Trigger Shutter mode (TriggerMode = On, TriggerSequence = 0 or 1)

Camera transfers "AcquisitionFrameCount" frame(s). It requires "AcquisitionFrameCount" time(s) of trigger.

AcquisitionFrameCount

- Bulk function (TriggerMode = On, TriggerSequence = 6)

Camera transfers "TriggerAdditionalParameter" frame(s) by a single trigger.

Note

In Bulk function, you may want to set "Continuous" to "AcquisitionMode" register.

You can set "MultiFrame", but acquisition frame number is limited by "AcquisitionFrameCount.

155 / 157 Copyright © 2020 Toshiba Teli Corporation, All rights reserved.

Warranty rules

Warranty term

Warranty term is 36 months after your purchase. We may assume the date of the purchase from our shipping date when the date is unidentified.

• Limited Warranty

Free warranty is not applicable for the troubles, damages or losses caused by the cases of the followings, even if it is during the warranty term.

- 1. Natural exhaust, wear or degradation of a component parts
- 2. Handling against the instructions and conditions described in the instruction manual
- 3. Remodeling, adjustment and the part exchange. (including the opening of the enclosure box and the alteration)
- 4. Using the accessories not included with the product or our non-designated optional articles
- 5. Damages caused during the transportation or deficiency of the handling such as drop or fall of the products after the products having been transferred to customers, leaving the products to corrosive environment such as sunlight, fire, sand, soil, heat, moisture, or an inappropriate storing method
- 6. A fire, an earthquake, a flood, a lightning, or other natural disasters, pollution and a short circuit, abnormal voltage, excessive physical pressure, theft, other accident
- 7. When connected to a product which is not recommended
- 8. When connected to the power supply which is not suitable
- 9. Forgery product, products which does not have proper serial number, products of which serial number is forged, damaged or deleted
- 10. All defects that happened after the expiration for a warranty term

Repair

Repair methods

Basically, has to return it to our company when the user requests us to repair product. In the case, exchange to a replacement or an equal function product.

• Repair request methods

On the occasion of a repair request, please download the "Failure situation report sheet" from our website, fill in the necessary items and return it together with the defective product.

Repair Request Methods

http://www.toshiba-teli.co.jp/en/support/contact/failure_situation.htm Please read the following instructions carefully.

- 1. Please return our product alone, taking out of your equipment in case that our product is installed to an equipment
- 2. We are unable to return the information such as your own serial numbers, control number, the identification seal, if it is attached to the returned products. Please keep record before you return the product.
- 3. As the data saved in the camera will not be kept after the repair, please take out data before return.
- 4. We are unable to accept the cancellation after the repair request by the customer's reason.
- 5. About the repair product shipping expenses, please bear the charges when you return the product to us. We bear the charges to you from us only for a warranty period.
- 6. We are unable to accept your request of a delivery date and time of the product return, or the delivery method.
- 7. We are unable to accept a trouble factor investigation, the request of the repair report.
- 8. We accept a repair of out of warranty product, if it is reparable.
- 9. The proprietary rights of the repair request products after the exchange repair belong to us.
- 10. The immunity from responsibility of the product is applied in the repair completion products.
- * Please refer for the inquiry about the software to our homepage or sales personnel.