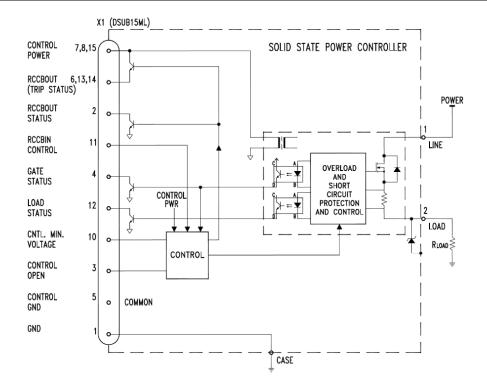
P800

SOLID STATE POWER CONTROLLER 28 VDC, 150 AMP RATING

DESCRIPTION

The P800 device specified herein is a solid state power controller offering combined switching, protection and status reporting features. The status signals are implemented using opto-isolators to give galvanic isolation between the controlling and power circuits. Internal power supplies are derived from a DC/DC converter fed by the CONTROL POWER input, also maintaining galvanic isolation. The protection afforded by these devices is detailed on page 8: Trip Curve. When the load current exceeds this envelope the device will trip, resulting in removing line voltage from the load. The status of the load current and output power FED Gate are reported by discrete status output lines. Timing characteristics of the device are represented on page 8 and page 5: Timing diagram.


SIZE: 80 x 96 x 45 mm WEIGHT: MAX 500g

FEATURES

- Power FET output
- Low voltage drop
- · Built-in overload and short circuit protection
- · Trip-free characteristics
- Load status indictor

- Trip indicator
- Optically isolated (500 Vrms)
- MTBF = 62,000
- Full rated current up to 90° C
- Fast response

BLOCK DIAGRAM

SOLID STATE POWER CONTROLLER 28 VDC, 150 AMP RATING

ELECTRICAL CHARACTERISTICS

INPUT PARAMETER					
Parameter	Symbol	Min.	Max.	Unit	Notes
Control Power (On)	ViHc	16.0	33.5	V	
Control Power (Off)	VILC	0	5.0	V	
Control GND Current (On)	Інс		25	mA	1
Control Power (Trip) Current	I _{TRIP}		11	А	2
Control Minimum Voltage (On)	Vihs	0	17	V	3
Control Minimum Voltage (Off)	VILS	23	33.5	V	4
Control Minimum Voltage Current	Іінѕ		0.5	mA	
Control Open (On)	Rins	15		kΩ	
Control Open (Off)	Rins		5	kΩ	
Control Open Current	lils	0.5		mA	
Control Open Blocking Voltage	V _B	15		V	4
RCCBIN (On)	R _{IHR}		5	kΩ	
RCCBIN (Off)	R _{ILR}	15		kΩ	
RCCBIN Current	I _{ILR}		15	mA	
RCCBIN Blocking voltage	V _{BR}	33.5		V	4

NOTES

- 1. Current measured at ambient.
- 2. When RCCB is being driven I_{TRIP} = 11 A max.
- 3. Control minimum voltage has a hysteresis of 1 V min.
- 4. Driver must be able to withstand this voltage.

SOLID STATE POWER CONTROLLER 28 VDC, 150 AMP RATING

INPUT SIGNAL TRUTH TABLE

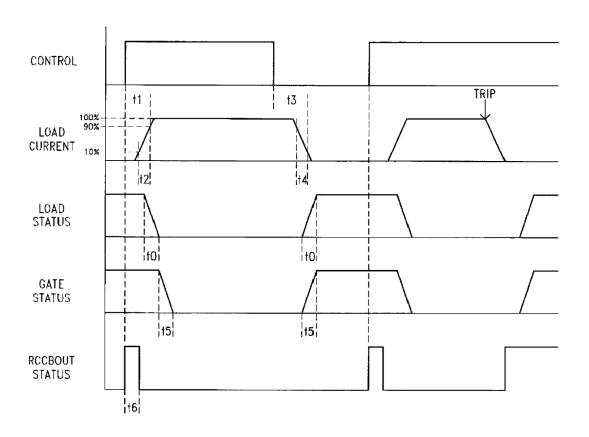
	RCCBIN Control	CONTROL POWER	CONT.MIN. VOLTAGE	CONT. OPEN	Solid State Power Controller
1	OPEN	0 V	< 17 V	GND	OPEN
2	OPEN	0 V	< 17 V	OPEN	OPEN
3	OPEN	0 V	> 23 V	GND	OPEN
4	OPEN	0 V	> 23 V	OPEN	OPEN
5	OPEN	28 V	< 17 V	GND	OPEN
6	OPEN	28 V	< 17 V	OPEN	OPEN
7	OPEN	28 V	> 23 V	GND	OPEN
8	OPEN	28 V	> 23 V	OPEN	OPEN
9	GND	0 V	< 17 V	GND	OPEN
10	GND	0 V	< 17 V	OPEN	OPEN
11	GND	0 V	> 23 V	GND	OPEN
12	GND	0 V	> 23 V	OPEN	OPEN
13	GND	28 V	< 17 V	GND	OPEN
14	GND	28 V	< 17 V	OPEN	CLOSED [1]
15	GND	28 V	> 23 V	GND	OPEN
16	GND	28 V	> 23 V	OPEN	OPEN

NOTES

1. SSPC will be closed if not tripped.

P800 SOLID STATE POWER CONTROLLER 28 VDC, 150 AMP RATING

ELECTRICAL CHARACTERISTICS


OUTPUT PARAMETERS						
Parameter	Symbol	Min.	Max.	Unit	Notes	
Load current	lι	0	150	А	1, 8	
On State Voltage Drop	V_{LD}		300	mV	2	
Off State Line Voltage	VL		33.5	V	3	
Leakage Current	Ill		20	mA	4	
Trip Current	I _T	104	120	%	5	
Gate Status High Impedance	Rons	1		МΩ	7	
Gate Status Low Impedance	Rols		1.5	kΩ	7	
Load Status High Impedance	Rohs	1		МΩ	7	
Load Status Low Impedance	R _{OLL}		1.5	kΩ		
Load Status Pickup			15	% I _{rated}		
Load Status Dropout		5		% I _{rated}		
RCCBOUT Voltage High		33.5	V			
RCCBOUT Impedance		2	4	Ω	6	
RCCBOUT Status Low Impedance	Rosls		1.5	kΩ	7	
RCCBOUT Status High Impedance	Roshs	1		МΩ	7	

NOTES

- 1. Load current is subject to thermal derating.
- 2. Load current is 100% rated current.
- 3. Reverse polarity is not blocked and may damage the SSPC.
- 4. At $V_L = 28$ °C, case temperature = 70° C.
- 5. Refer to trip characteristics.
- 6. RCCBOUT current sourced on device trip, compatible with 0,5 Amp circuit breaker type MS 22073.
- 7. Open collector type output. Maximum blocking voltage is 75V.
- 8. 150 A is 100% rated load, for the existing device. Variants 75 amps and 220 amps are also available.

TIMING DIAGRAM

STATUS CONDITIONS

State	Control [1]	Gate-Status	Load-Status	RCCBOUT	RCCBOUT-Status	Condition
1	Off	Low	Low	Low	High	Error
2	Off	Low	High	Low	High	Error
3	Off	High	Low	Low	High	Error
4	Off	High	High	Low	High	Normal Off
5	On	Low	Low	Low	High	Normal On
6	On	Low	High	Low	High	No load
7	On	High	Low	Low	High	Error
8	On	High	High	High	Low	Tripped

NOTES

^{1.} The column "CONTROL" in the above table represents the combined effect on the device of the three controlling signals RCCBIN CONTROL, CONTROL OPEN and CONTROL MINIMUM VOLTAGE. All three signals must be in the ON condition to turn the device ON. Any one signal in the OFF condition will turn the device OFF.

EMIC CHARACTERISTICS

The device will meet the following EMIC-requirements

Magnetic effect
 Power inputs
 Voltage spike
 Audio Frequency Conducted Susceptibility
 Induced signal Susceptibility
 per RTCA/DO-160C, section 15, category A
 per RTCA/DO-160C, section 17, category A
 per RTCA/DO-160C, section 18, category Z
 per RTCA/DO-160C, section 19, category A

- Radio Frequency Susceptibility, per RTCA/DO-160C, section 20, category W

HIRF: 10 KHz - 400 MHz: 100 V/m

400 MHz - 18 GHz: 150 V/m

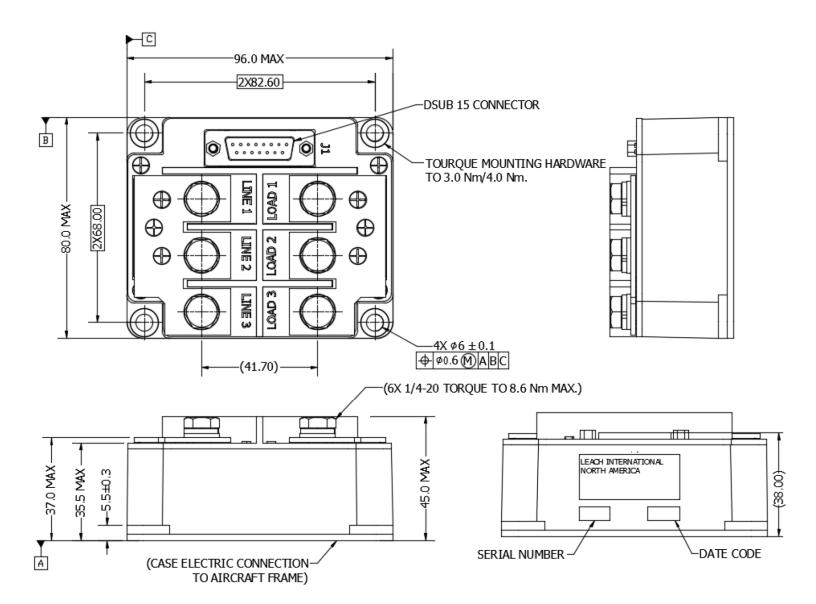
- Emission of Radio Frequency Energy per RTCA/DO-160C, section 21, category Z

- Lightening, PIN injection per RTCA/DO-160D, section 22,

 Waveform 2
 300V/60A

 Waveform 3 (1MHz)
 600V/24A

 Waveform 4
 300V/60A


 Waveform 5A
 300V/60A

ENVIRONMENTAL CHARACTERISTICS

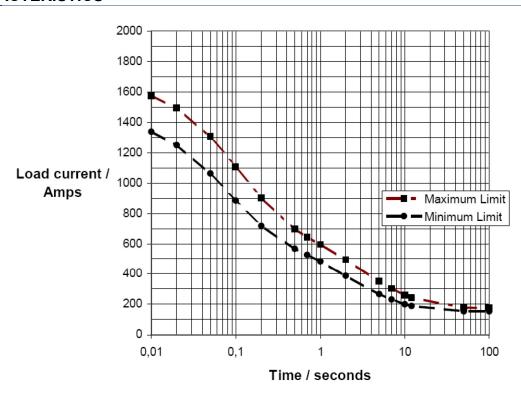
Parameter	Symbol	Min.	Max.	Unit	Notes		
Operational temp. range	Case	-40	+90	°C			
Storage temp. range		-55	+85	°C			
Altitude		-1,300	+51,000	ft			
Vibration	per RTCA/DO-160	per RTCA/DO-160C, Section 8, Category D					
Acceleration	per MIL-STD-810, Method 513.4, Category Aircraft						
Shock	per RTCA/DO-160C, Section 7, Category B						
Humidity	per DO-160C, Section 6, Category B						

PHYSICAL DATA (in mm)

Housing Finish: Plastic

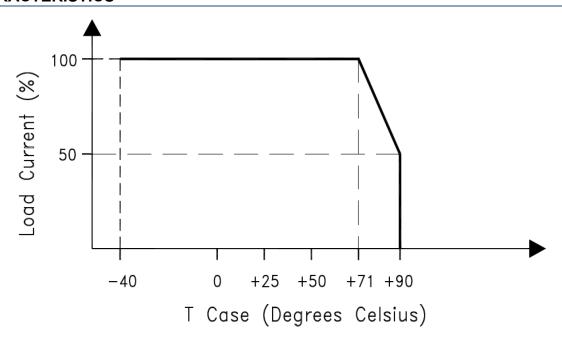
Base: Aluminum Finish: Flat Black

Mass: 500 grams max


TIMING

Parameter	Symbol	Max.	Unit	Notes
STATUS Rise and Fall Time	to	20	μs	1
Turn-on	t ₁	5000	μs	1
Load Current Rise Time	t ₂	1000	μs	1
Turn off	t ₃	5000	μs	1
Load Current Fall Time	t ₄	1000	μs	1, 2
BIT/TRIP Rise and Fall Time	t ₅	20	μs	1
RCCBOUT Status	t ₆	600	μs	1

NOTES


- 1. All timing measurements taken at 10% and 90% points with a resistive rated load.
- 2. Load current fall time from trip event is dependant on overload condition.

TRIP CHARACTERISTICS

TRIP CHARACTERISTICS

