A58H
 PHOTOELECTRIC ROTARY ENCODER

The encoder A 58 H is used to measure angular position of the key machine components, industrial robots, comparators, rotary tables, servo drives and to establish an informational link with DCC, NC or Digital Readout Units.
The encoder has integrated stator coupling so it can be fixed directly onto shaft. Mounting adapter is available on request.
The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.
The case of encoder is mounted via four screws M3 or through adapter.

Encoder is coupled via sleeve coupling, backing screws are provided on both sides of the coupling.

MECHANICAL DATA

Line number on disc (z)	$100 ; 250 ; 500 ;$
	$600 ; 800 ; 1000 ;$
	$1024 ; 1125 ; 1250 ;$
	$1500 ; 2000 ; 2500 ;$
	$3000 ; 3600 ; 4000 ;$
	$5000 ; 9000 ;$
	10800

(2)米⑴(1) HD 쏘

Three versions of output signals are available:

- A58H-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App} ;$
- A58H-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A58H-F - square-wave signals (TTL) with integrated subdividing electronics for interpolation $x 1, x 2, x 3$, x4, x5, x8, x10.

Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.025 \mathrm{Nm}$
Rotor moment of inertia	$<1.5 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (housing) (IEC 529)	IP64
Protection (shaft side) (IEC 529)	0.35 kg
Maximum weight without cable	$-10 \ldots+70^{\circ} \mathrm{C}$
Operating temperature	$-30 \ldots+80^{\circ} \mathrm{C}$
Storage temperature	98%
Maximum humidity (non-condensing)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible vibration (55 to 2000 Hz)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	

ELECTRICAL DATA

VERSION	A58H-A $\sim 11 \mu \mathrm{App}$	A58H-AV $\sim 1 \mathrm{Vpp}$	A58H-F П TTL; Пل HTL
Supply voltage (\cup_{p})	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$; $+(10$ to 30$) \mathrm{V}$
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source	LED		LED
Incremental signals	Two sinusoidal I , and I Amplitude at $1 \mathrm{k} \Omega$ load: $\begin{aligned} & -11=7-16 \mu \mathrm{~A} \\ & -12=7-16 \mu \mathrm{~A} \end{aligned}$	Differential sine $+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$ Amplitude at 120Ω load: $\begin{aligned} & -A=0.6-1.2 \mathrm{~V} \\ & -B=0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave U1/ $\overline{\mathrm{U} 1}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signal levels at 20 mA load current: low (logic " 0 ") $\leq 0.5 \mathrm{~V}$ at $U_{\mathrm{p}}=+5 \mathrm{~V}$ low (logic " 0 ") $\leq 1.5 \mathrm{~V}$ at $U_{\mathrm{p}}=10$ to 30 V high (logic " 1 ") $\geq 2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ high $\left(\right.$ logic "1") $\geq\left(U_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V
Reference signal	One quasi-triangular I_{0} peak per revoIution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular +R and its complementary -R per revolution. Signals magnitude at 120Ω load - $\mathrm{R}=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/U0 per revolution. Signal levels at 20 mA load current: - low (logic " 0 ") $<0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}=+5 \mathrm{~V}$ - low (logic "O") $<1.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{p}}^{p}=10$ to 30 V - high (logic " 1 ") $>2.4 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{P}}=+5 \mathrm{~V}$ - high (logic "1") $>\left(\cup_{p}-2\right) \vee$ at $U_{p}=10$ to 30 V
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	$(160 \times \mathrm{k}) \mathrm{kHz}$, k-interpolation factor
Direction of signals	I. lags I, for clockwise rotation (viewed from shaft side)	+B lags +A for clockwise rotation (viewed from shaft side)	U2 lags U1 with clockwise rotation (viewed from shaft side)
Maximum rise and fall time	-	-	$<0.5 \mu \mathrm{~s}$
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals			

1. Maximum working rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed.
2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

MOUNTING REQUIREMENTS

ACCESSORIES

CONNECTORS FOR CABLE	B12 12-pin round connector	C9 12-pin round connector	C12 12-pin round connector	D9 9-pin flat connector	D15 15-pin flat connector	RS10 10-pin round connector	ONC 10-pin round connector
DIGITAL READOUT DEVICES	CS3000			CS5500			
EXTERNAL INTERPOLATOR				NK			

ORDER FORM

