

The company under the name JSC "Precizika Metrology" began work after the change of name of the Lithuanian - American Joint Venture "Brown \& Sharpe - Precizika". The company has a proud history of old traditions in the leadership of design and production of metrological equipment. Its workforce has been involved for over fifty years in the supply of measuring technology and systems to automate factories as well as in the developmen opical scale manufacturing technology.
In 2000, the production process was certified to fully meeting the requirements of EN ISO 9002:1994, in 2003 - EN ISO 9001:2000
The company's goal is to consistently supply high quality products and services to meet customer demands on a timely basis. The company's main products are linear and angular glass scale gratings, and the linear and rotary displacement measuring systems.
ISC "Precizika Metrology" represents worldwide known companies and suppliers of measuring equipment, CNC centers, executes installation and services of them, trains the users, and executes upgrading of used CMM and manual cutting machine-tools.

$458-1 / 2$

METROLOGY

The encoder A58HM is used to measure angular position of the key machine components, industrial robots, comparators, rotary tables, servo drives and to establish an informational link with DCC, NC or Digital Readout Units. The encoder has integrated stator coupling so can be fixed directly onto object shaft. Mounting adapter - similar to adapter of encoder A58H - is available on request. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc. The housing of the encoder is fixed to an object by
means of four screws M3 or through adapter. The fixation to object shaft is made by two screws M3. Three versions of output signals are available:

- A58HM-A - sinusoidal signals, with amplitude approx. 11 HApp;
- A58HM-AV - sinusoidal signals, with amplitude approx. 1 Vpp ;
- A58HM-F - square-wave signals (TTL or HTL) with integrated subdividing electronics for interpolation $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \times 4, \times 5, \times 8, \times 10$.

A58HM

RECOMMENDED APPLICATIONS

(2)

MECHANIGAL DATA

Line number on disc (z)	100; 250; 500; 600; 800; 1000; 1024; 1125; 1250; 1500; 2000; 2500; 3000; 3600; 4000; 5000; 9000; 10800
Pulse number per shaft revolution for A58-F	Z $\times \mathrm{k}$, where $\mathrm{k}=1,2,3,4,5,8,10$ (k - interpolation factor)
Maximum shatt speed	10000 rpm
Permissible motion of shaft: - axial - radial (at shaft end)	$\begin{aligned} & \pm 0.03 \mathrm{~mm} \\ & 0.05 \mathrm{~mm} \end{aligned}$
Accuracy (Γ_{1}-period of lines on disc in arc. sec) on option for z < 5000 on option for z > 5000	$\pm 0.1 \mathrm{~T}_{1}$ arc. sec $\pm 0.05 \mathrm{~T}$, arc. sec ± 12.0 arc. sec

Starting torque at $20^{\circ} \mathrm{C}$	$\leq 0.025 \mathrm{Nm}$
Rotor moment of inertia	$<1.5 \times 10^{-4} \mathrm{kgm}^{2}$
Protection (housing) (IEC 529)	$\mathbb{1 P 6 4}$
Protection (shaft side) (IEC 529)	$\mathbb{P} 64$
Maximum weight without cable	0.35 kg
Operating temperature	$0 . .+70^{\circ} \mathrm{C}$
Storage temperature	$-30 . .+80^{\circ} \mathrm{C}$
Maximum humidity (non-condensing)	98%
Permissible vibration (55 to 2000 Hz)	$\leq 100 \mathrm{~m} / \mathrm{s}^{2}$
Permissible shock (11 ms)	$\leq 300 \mathrm{~m} / \mathrm{s}^{2}$

ELECTRICAL DATA

version	A58HE-A $\sim 11 \mu$ App	A58HE-AV $\sim 1 \mathrm{Vpp}$	
Supply voltage (U_{P})	$+5 \mathrm{~V} \pm 5 \%$	+5V $\pm 5 \%$	$+5 \mathrm{~V} \pm 5 \%$; +(10 to 30) V
Max. supply current (without load)	80 mA	120 mA	120 mA
Light source	LED	LED	LED
Incremental signals	Two sinusoidal $!$ and \mid Amplitude at 1 k K load $-12=7-16 \mu \mathrm{~A}$	Differential sine $+A /-A$ and $+B /-B$ Amplitude at 120Ω load: $\begin{aligned} -A & =0.6-1.2 \mathrm{~V} \\ -B & =0.6-1.2 \mathrm{~V} \end{aligned}$	Differential square-wave $\mathrm{U} 1 / \overline{\mathrm{V}}$ and $\mathrm{U} 2 / \overline{\mathrm{U} 2}$. Signa dels a 20 mA load current: ow logic "n" $\leq 0.5 \mathrm{~V}$ at $U_{p}=+5 \mathrm{~V}$ high (ogic "1") $>2.4 \mathrm{~V}$ at ${ }^{p}=50$ to 30 V - high $(l o g i c=11 ") \geq\left(U_{p}-2\right) \vee$ at $U_{P}=10$ to 30 V
Reference signal	One quasi-triangular I_{0} peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: $-I_{0}=2-8 \mu \mathrm{~A}$ (usable component)	One quasi-triangular $+R$ and its complementary -R per revolution. Signals magnitude at 120Ω load = $=0.2-0.8 \mathrm{~V}$ (usable component)	One differential square-wave UO/UO per revolution Signal levels at 20 mA load current: -10 w (logic " " 0 ") $<0.5 \mathrm{~V}$ at $\mathrm{U}_{\mathrm{o}}=+5 \mathrm{~V}$
Maximum operating frequency	$(-3 \mathrm{~dB}) \geq 160 \mathrm{kHz}$	$(-3 \mathrm{~dB}) \geq 180 \mathrm{kHz}$	(160 Kk) kH, , k-interpolation factor
Direction of signals	1_{2} lags 1 , for clockwise rotation	B lags A for clockwise rotation	U2 lags U1 with clockwise rotation
Maximum rise and fall time			< 0.5 us
Standard cable length	1 m , without connector	1 m , without connector	1 m , without connector
Maximum cable length	5 m	25 m	25 m
Output signals	1 1.		

2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$

