MANUAL REG FET Doppio Eurocard

RE Elettronica Industriale Via Ilaria Alpi N°6 - zona industriale - Lonato (BS) Cap.25017 Tel. 030/9913491r.a. Fax. 030/9913504 http://www.re-elettronica.com

info@re-elettronica.com

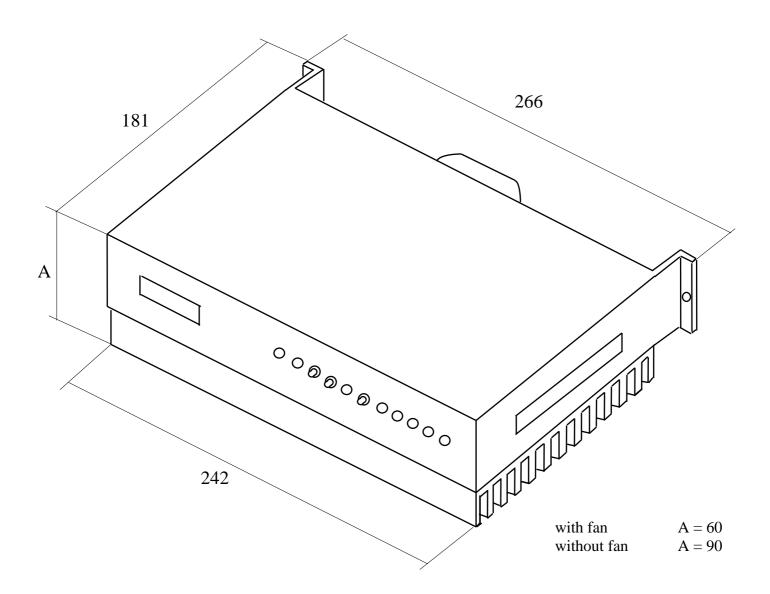
Indice Pag. 1

Index

Index	pag.1
General Features	pag.3
Mechanical features	
Available sizes	
Electrical features	
Protections	
LEDs	
Terminal blocks signal descriptions	
Front of the driver	
Terminal blocks view	
Settings	pag.8
External components dimensions	pag.9
Supply transformer	
Fuses	
Leveling inductance	
Connections	pag.10
Potentiometer reference without ramps	
Potentiometer reference with ramps	
Torque potentiometer	
Numerical control speed reference	
Fault research	pag.14

Indice Pag. 2

General rules for net disturbs suppression...... pag.15


General features

Mechanical features

Multiple-board driver encased in a metallic cover, fixed to the radiator which has the function of support for the entire structure. The "book" format makes possibile to reduce the size. The driver is designed to be mounted singly with or without fan or in a rack with two or three drivers and common ventilation.

The output interface is made with two terminal blocks. The 16-poles A terminal block for control signals, and 10-poles terminal block for power signals. We report the dimensions of the driver.

REG FET Doppio Eurocard driver

Available sizes

DRIVER	Nominal	Peak	Motor Vdc	Three-phase	EMI Filter
TYPE	Current	Current	max	Vac supply	
REG FET 140-8	8	16	120	70-100±10%	832010V
REG FET 140-16	16	32	120	70-100±10%	832016V

Electrical features

- Switching driver with "PWM" impulse width modulation, bi-directional, four quadrants, high speed response, made with a MOSFET H bridge.
- One three phase power supply 70-150Vac $\pm 10\%$.
- Double ring speed and current regulation.
- Speed feedback from tacho dynamo or directly from armature voltage.
- Form factor almost equal to one, so it's not necessary to connect a leveling inductance to the motor.
- Control with ± 10 V analogue signals from numeric control, potentiometer or other signal source
- 20 kHz working frequency (no audible noise).
- Cutting frequency >600 Hz (response time < 16ms).
- Differential analogue speed input.
- Resettable speed offset.
- Input impedance 20Kohm.
- Temperature range from 0° to 40°C.
- Peak current (first peak) twice as high as nominal current for one second.
- Possibility of inserting ramps on speed reference

Protections

- IGBT fault.
- Internal current supply failure.
- Motor short-circuit.
- Temperature too high.
- Minimum voltage.
- Voltage too high.
- Braking circuit fault or inadequate braking.
- Dinamo tear

The intervention of a protection is signalled by the lighting of the red fault LED, and externally is hsown by the opening of a photo-transitor normally closed between terminal 1 and 2 (when it is closed it signals the status of OK driver).

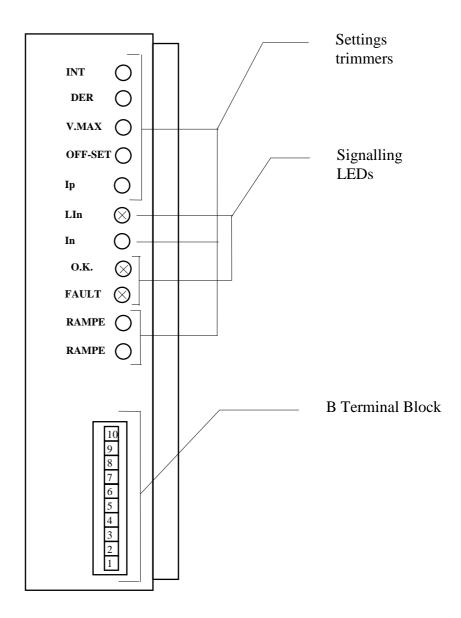
LEDs

The diagnosis of the driver functions is made using the following LEDs:

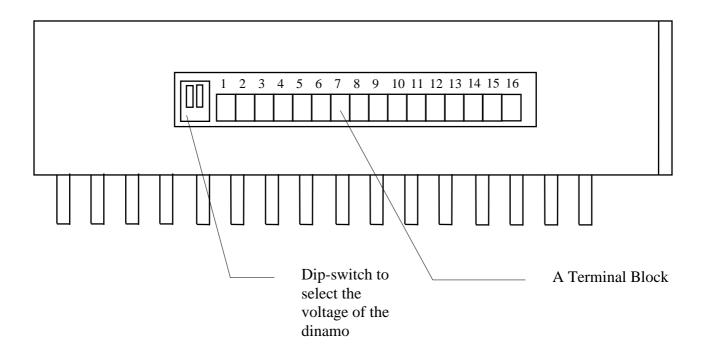
- GREEN LED The driver is properly working, to make the driver supply power it will be necessary to give the driver the abilitation.
- YELLOW LED The driver is returning to supply the nominal current after supplying peak current.
- RED LED The driver is blocked after one of the previous circumstances happened (when the red LED lights up the green RED turns off).

Terminal block signals description

A terminal block (control signals, 16 poles)


- 1. Input of the photo-transistor which signals driver OK (it opens when a protection intervenes)
- 2. Output of the aforementioned photo-transistor.
- 3. Ramp circuit input.
- 4. Ramp circuit output.
- 5. Current limitation input from an esternal 0-10V reference (10v=maximum current=current given by the size of the driver).
- 6. Enable (to enable the driver you must bring the terminal to a voltage between 12 and 24V)
- 7. Positive supply +20V (10mA max.)
- 8. Signals 0V
- 9. Tacho dinamo signal
- 10. Block of the reference: when brought to a voltage of +20V it stops the motor by blocking the speed reference (this function is available only if specifically requested)
- 11. Ground input.
- 12. Signals 0V
- 13. Inverting input of the input differential for the speed reference.
- 14. Not-inverting input of the input differential for the speed reference.
- 15. Negative supply -10V.
- 16. Positive supply +10V.

B terminal block (power terminal block, 10 poles)


- 1. Three-phase supply phase R.
- 2. Three-phase supply phase R.
- 3. Three-phase supply phase S.
- 4. Three-phase supply phase S.
- 5. Three-phase supply phase T.
- 6. Three-phase supply phase T.

- 7. First motor terminal block.
- 8. First motor terminal block.
- 9. Second motor terminal block.
- 10.Second motor terminal block.

Front of the driver

A Terminal block

Regolazioni Pag. 8

Settings

Trimmers:

V.max.

It regulates the maximum speed of the motor. The maximum speed is obtained by setting the reference to 10V.

Der.

It regulates the gain of the speed ring, together with trimmer Int., and therefore the time of response of the system.

By turning the trimmer Der. clockwise, thereby increasing the gain, you make the driver more reactive to sudden variations of the motor.

It can be employed to reduce overshoot amplitude.

Int.

It is the fundamental trimmer to regulate the gain of the speed ring (derivative and proportional actions), therefore for the regulation of the passing band of the feedbacked system, turning counterclockwise you increase the system gain and therefore the speed of response, trespassing a certain values determined by the load on the motor the system becomes unstable and a vibration is produced.

The best regulation is the value before the one that makes the system unstable.

Offset


With a speed reference=0 brings the motor speed to zero.

Rampe

The two ramp trimmers regulate the bias of the ramps. They are necessary to prevent the motor from sudden speed variations.

Dynamo voltage dip-switch

To set the driver according to the dynamo voltage you must use the dip-switch near the A terminal block and after that for a more precise setting you must use the trimmer Vmax.

Dt max	Microswitch 1	Microswitch 2
60-80V	OFF	OFF
40V	ON	OFF
20V	ON	ON

External components dimensioning

Supply transformer

The primary winding will have a voltage adequate to the supply voltage.

The output voltage from the secondary winding is given by the following formula:

$$Vac = V motor (nominal) * 0.88$$

The power of the transformer is given by the following formula:

$$P = 1.5 * Motor power$$

To size a transformer that supplies more than one driver, calculate the power for each driver and then sum them.

N.B. The set current on the driver can be 10% more than the nominal current of the motor.

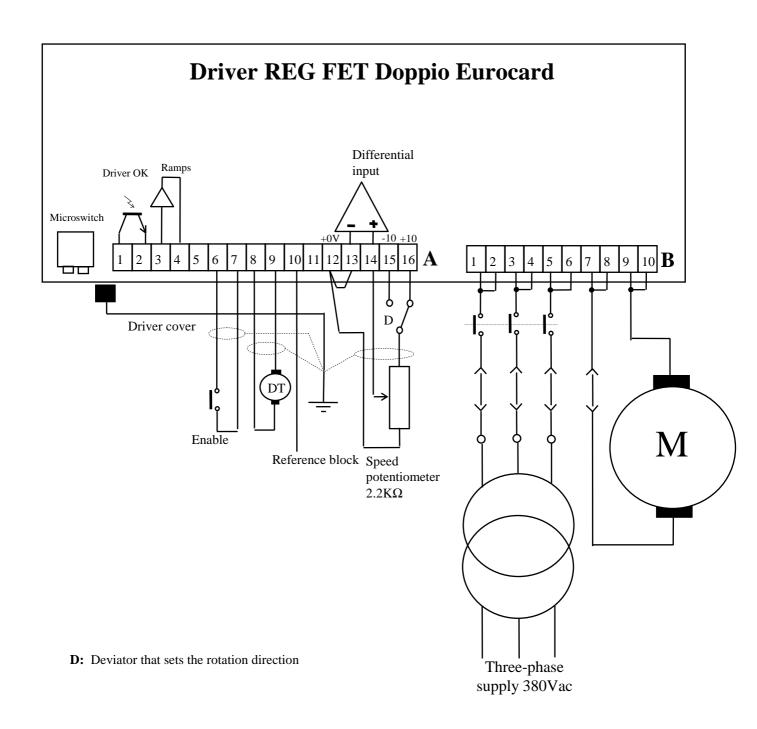
Fuses

Fuses on the supply:

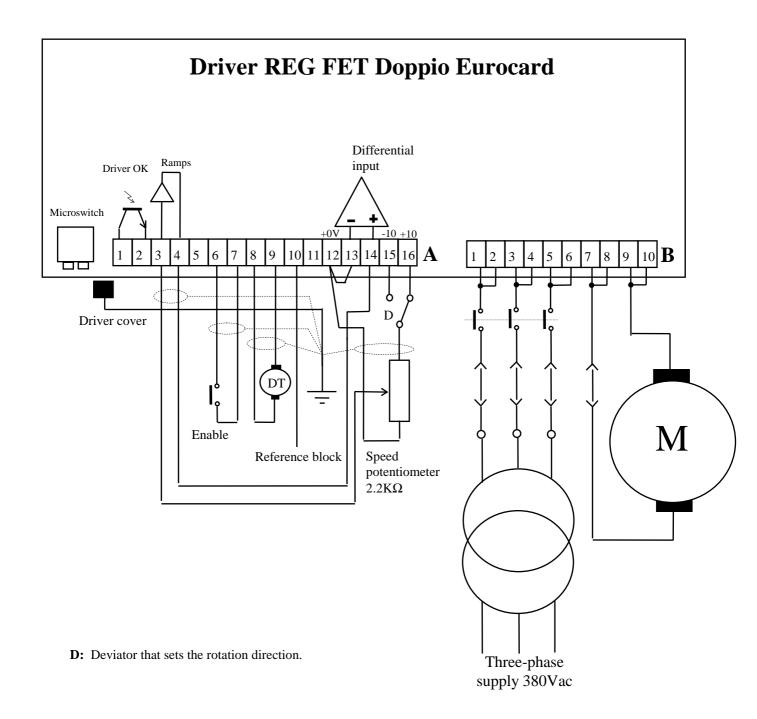
Normal fuses Current = 1.5*driver nominal current

Fuse to protect the motor:

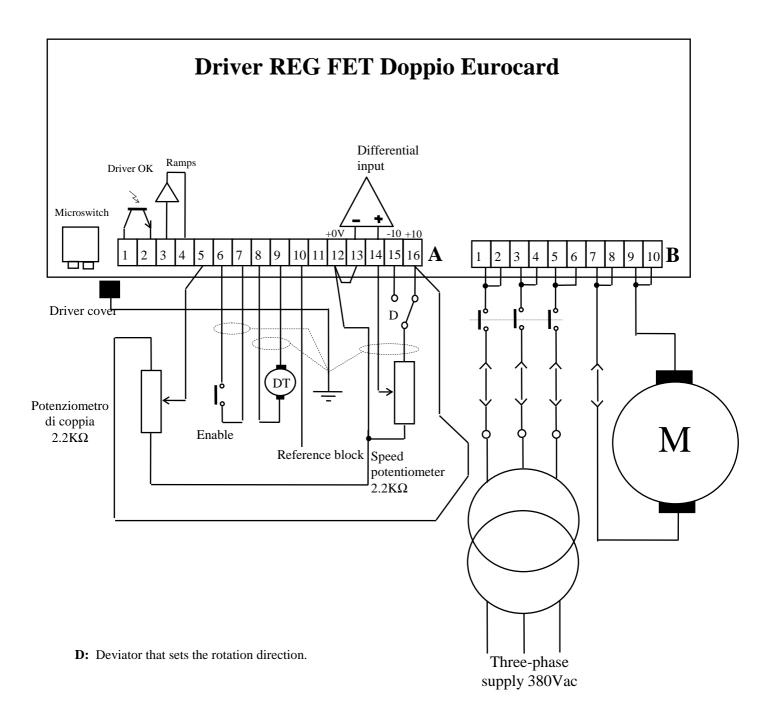
Extra-fast fuses Current = 3 * motor nominal current

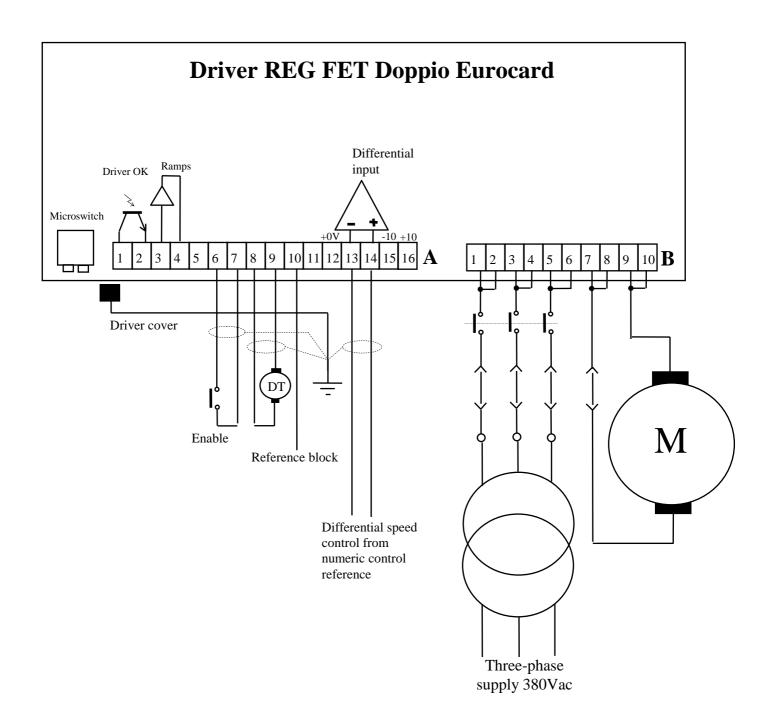

Leveling inductance

A leveling inductance is seldom necessary thanks to the 20 kHz frequency that guarantees a form factor next to one, if you are using a motor with low armature inductance, (as flat rotor Mavilor motors), we suggest to insert a levelling inductance as per the following tab:


Driver sizes	Inductance
4-8	1.5mH
8-16	1.5mH

wirings


Wiring with potentiometer reference and off ramps


Wiring with potentiometer reference and on ramps

Wiring with torque potentiometer

Wiring with numeric control reference

Ricerca guasti Pag. 14

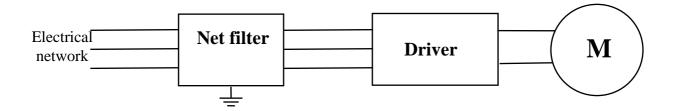
Fault research

	Fault	Cause	Remedy
•	The driver burns the fuses when supplied (*)	 Driver in shortcircuit Wrong fuses	• Replace the driver
			• Use fuses with the correct value
•	The driver blocks as soon as supplied (both red LEDs lit) before enabling it	Supply voltage too high	• Lower the supply voltage.
•	The driver blocks (both red	 External short circuit 	• Remove the short circuit
	LEDs lit) as soon as enabled.	• Internal short circuit	• Replace the driver
•	The motor blocks (both red LED lit) during swift acceleration or deceleration	 The braking system doesn't work properly 	 Check the correct connection of the braking resistance
		 The braking system is not enough compared to the load 	 Ask for technical assistance to empower the braking system
•	The motor exceeds the	• Connection with the tacho	• Check the connections and
	maximum speed and there is no control over the speed.	dynamo interrupted or reversed.	if necessary reverse themCheck the dinamo
	•	 The tacho dynamo doesn't work properly 	
•	The driver blocks (S.T. red LED is lit) after a certain time of work and the radiator is hot	• The thermic protection intervened	 Let the driver cool down and look for the cause of heating

^(*) It's absolutely important to use fuses on the supply, otherwise in case of short-circuit there is the risk of fire.

General rules to eliminate network disturbs and EMI (CE certification)

All the electrical equipments that switch inductive loads generate disturbs that can spread electromagnetically (EMI) or via conduction (along the electrical network, on inductive couplings of wires). We supply some rules to eliminate these disturbs.


ATTENTION!!! The driver you bought has been tested for electromagnetical compatibility and CE certification, anyways to guarantee the electromagnetical compatibility of the whole equipment you have to follow these instructions.

Net filters utilization

To prevent the generated disturbs from propagating on the electrical networks and from disturbing other connected devices is necessary to use net filters.

To choose a net filter you must pay attention to the type of network it will be connected (single phase or three phase), to the power absorbed by the load and to the power of the filter (single cell or double cell). It is important to connect the filter near to the driver (not beyond 30 cm of wire), and its metallic cover must be grounded.

In this manual there is written next to each driver size the adequate net filter. If needed net filters can be bought from us.

Shielded cables use

Connection cables are antennas that receive and transmit disturbs; you must use shielded cables both for low-power links (control links) and high-power links (links with the motor).

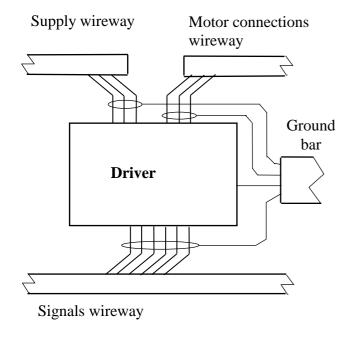
By doing this you will reduce the noise and the emitted electro-magnetic interference.

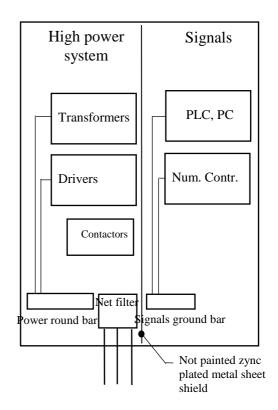
Attention! The shield must be grounded only on one end of the cable, you can link it to the mass of the motor which will be grounded as well.

Adequate cables layout

The correct wiring of the panel is fundamental for a good functioning of the entire system and to solve problems of electromagnetical compatibility. Here there are the main rules for the array of the cables.

- Use shielded cable both for control and power links.
- If possibile keep a distance between control and power cables.


- Put the cables into wireways or metal pipes.
- Avoid tangles and crossings, where this is not possible make only 90° crossings.


Grounding

Grounding is fundamental to reduce disturbs; follow this general rules:

- Ground the mass of the driver (0V signal) linking it to all the shields of the control cables.
- Ground all the metallic shells of the system (cover and radiator of the driver, motor shell, etc.) trying to use wide surfaces of contact.
- For the groundings use low-impedance cable even for high frequencies.
- Remove layers of paint or oxide from the surfaces of contact.
- Insert in the usual maintenance program the control of the low-impedance of ground links.

Electric panel example

