A90H

PHOTOELECTRIC ANGLE ENCODER (A90H-A, A90H-AV, A90H-F

The semi-precision photoelectric angle encoder $\mathbf{A 9 0 H}$ is used to measure angular position of the key machine components, industrial robots, comparators, rotary tables and to establish an informational link with DCC, NC or Digital Readout Units. It provides information about the value and direction of motion. The encoder is used in automatic control, on-line gauging, process monitoring systems, etc.
Three versions of output signals are available:

- A90H-A - sinusoidal signals, with amplitude approx. $11 \mu \mathrm{App}$;
- A90H-AV - sinusoidal signals, with amplitude approx. 1 Vpp;
- A90H-F - square-wave signals (TTL) with integrated subdividing
 electronics for interpolation $\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 5, \mathrm{x} 10, \mathrm{x} 20, \mathrm{x} 25, \mathrm{x} 50$ and 100 . The modification with distance-coded reference marks is available. The encoder has two coupling versions: P - via shaft collar and H - via central screw.

Mechanical Data

- Line number (z):
Number of output pulses
per revolution for A90H-F:
- Reference signal:
- standard (S)
- distance-coded (K)
- Permissible mech. speed
- Max. operating speed (depends on number of output pulses)
- Permissible shaft runout:

- Electrical Data

Version

- Supply voltage
- Max. supply current (without load)
- Light source
- Incremental signals
- Reference signal

Max. operating frequency

- Direction of signals
- Max. rise and fall time
- Standard cable length
- Maximum cable length
$\mathbf{A 9 0 H}-\mathbf{A} \sim 11 \mu \mathrm{App}$
$+5 \mathrm{~V} \pm 5 \%$

100 mA
LED
Two sinusoidal I_{1} and I_{2}.
Amplitude at $1 \mathrm{k} \Omega$ load:
$-\mathrm{I}_{1}=7 \ldots 16 \mu \mathrm{~A}$
$-\mathrm{I}_{2}=7 \ldots 16 \mu \mathrm{~A}$
$\mathbf{A 9 0 H}-\mathrm{AV} \sim 1 \mathrm{Vpp}$
$+5 \mathrm{~V} \pm 5 \%$

120 mA
LED
Differential sine
$+\mathrm{A} /-\mathrm{A}$ and $+\mathrm{B} /-\mathrm{B}$
Amplitude at 120Ω load:

- $\mathrm{A}=0.6 . .1 .2 \mathrm{~V}$
- $\mathrm{B}=0.6 \ldots 1.2 \mathrm{~V}$

One quasi-triangular I_{0} peak per revolution. Signal magnitude at $1 \mathrm{k} \Omega$ load: - $\mathrm{I}_{0}=2 \ldots 8 \mu \mathrm{~A}$ (usable component)
$(-3 \mathrm{~dB}$ cutoff $) \geq 160 \mathrm{kHz}$
I_{2} lags I_{1} for clockwise rotation (viewed from encoder mounting side)

1 m , without connector
5 m

One quasi-triangular +R and its complementary -R per revolution Signal magnitude at 120Ω load: levels at 20 mA load current

$-\mathrm{R}=0.2 \ldots 0.8 \mathrm{~V}$
 - low (logic " 0 ") $\leq 0.5 \mathrm{~V}$

(usable component)
$(-3 \mathrm{~dB}$ cutoff $) \geq 180 \mathrm{kHz}$
+B lags+A for clockwise rotation (viewed from encoder mounting side)

1 m , without connector
25 m
per revolution. Signal

- high (logic "1") $\geq 2.4 \mathrm{~V}$
$160-1300 \mathrm{kHz}$ (depends on interpolation factor)

U2 lags U1 for clockwise
rotation (viewed from
encoder mounting side)
$\leq 0.2 \mu \mathrm{~s}$
1 m , without connector
25 m

A90H-F П TTL

$+5 \mathrm{~V} \pm 5 \%$

150 mA
LED
Differential square-wave U1/TU1 and U2/ $\overline{\mathrm{U} 2}$. Signal
levels at 20 mA load current:

- low (logic " 0 ") $\leq 0.5 \mathrm{~V}$
- high (logic "1") $\geq 2.4 \mathrm{~V}$

One differential square-wave U0/ $\overline{\mathrm{U} 0}$

Note: 1. Maximum operating rotation speed (with proper encoder counting) is limited by maximum operating frequency and maximum mechanical rotation speed. 2. If cable extension is used, power supply conductor cross-section should not be smaller than $0.5 \mathrm{~mm}^{2}$.

Mounting type \mathbf{P} (clamp)

Mounting type \mathbf{H} (screw)

- Output signals

Version

$\mathbf{A 9 0 H}-\mathrm{A} \sim 11 \mu \mathrm{App}$
$\mathbf{A 9 0 H}-\mathbf{A V} \sim 1 \mathrm{Vpp}$

A90H-F Пப TTL

Complementary signals are not shown

- Accessories

C9
9-pin round connector for $\mathbf{A 9 0 H}-\mathbf{A}$

ONC
10-pin round connector for all version of $\mathbf{A 9 0 H}$

C12
12-pin round connector for A90H-AV and A90H-F

D9
9-pin flat connector for all A90H versions

D15
15-pins flat connector for connection to DRO CS3000 and CS5500 Only for A90H-F

B 12
12-pin round connector for all version of L18

- Order form

	A90H	$-X-X X X X-X-X X$	- $X X$	X	- X	X/X
Output signals	Pulse number	Reference signal: Accuracy grade: Diameter of	Mounting	Cable or	Cable	Connector type:
version:	per revolution:	\mathbf{S} - one per revolution 50- $\pm 5.0 \mathrm{arc}$. sec. shaft hole:	type:	connector	length:	W - without
$\mathbf{A}, \mathbf{A V}$ or \mathbf{F}	18000	K - 36 per revolution, 75- $\pm 7.5 \mathrm{arc}$. sec. 20-20 mm	P - clamp	outlet:	AR01-1m	connector
		distance-coded 22-22 mm	H-screw	S - version S	AR02-2m	D9 - flat, 9 pins
	1800000			(cable outlet)	AR03-3m	C9 - round, 9 pins
				C-version C	...-...	C12-round, 12 pins
				(connector		D15-flat, 15 pins
Order exam	mple: $\mathrm{A90H}-\mathrm{A}-1$	8000-K-50-20-P-S-AR01/W		outlet)		ONC - round, 10 pins
						RS 10 - round, 10 pins

