

## FEATURES

- Small size and weight
- High-reliability design
- Hermetically sealed
- High transient immunity
- Qualified to MIL-PRF-83726/24
- Compatible with M12883/52 \& /53 socket module and track mount
- Reverse Polarity Protection

| Qualified or in accordance with | MIL-PRF-83726/24 |
| :--- | :--- |
| M12883/52 \& /53 |  |

PRINCIPLE TECHNICAL CHARACTERISTICS

## APPLICATION NOTE:

101
APPLICABLE SOCKETS:
SM-1000-003

| Enclosure: Hermetic Sealed per <br> MIL-STD883, Method 1014 | Yes |
| :--- | :--- |
| Finish: | Tin Plate |
| Terminals: | Plug-in |
| Gold Plate per MIL-G-45204 M12883/52 $=$ SOCKET <br> Type II, Class 2, Grade C  | M12883/53 = TRACK |

## DESCRIPTION

The TDH-1609 Time Delay Relays have been designed with thick film hybrid microelectronics timing circuits and are packaged in a hermetically sealed military style enclosure. The TDH-1609 series are qualified to MIL-PRF-83726/24 and designed to withstand severe environmental conditions encountered in military/aerospace applications. These relays are suited for use in power control, communication circuits and many other applications where power switching and high reliability are required over a wide temperature range.

## ELECTRICAL SPECIFICATION

| Input (Control) Parameters |  |
| :---: | :---: |
| Timing: |  |
| a. Operation, Time Delay on | Operate |
| b. Method | Fixed Period |
| c. Range | 0.05 to 500 Seconds [6] |
| d. Accuracy | $\pm 10 \%$ [1] |
| Recycle Time | 10 ms , Max [5] |
| Operations: (X1-X2) |  |
| a. Input \& Control Voltage | 20-30 Vdc |
| b. Operating Current | $10 \mathrm{~mA}, \mathrm{Max}$ @ +25 ${ }^{\circ} \mathrm{C}$ |
| Transients : |  |
| a. Positive, MIL-STD-704A, Figure9, Limit 1 | + 80 Volts Max |
| b. Spike, MIL-STD-704A, 0-10 $\mu \mathrm{s}$ | $\pm 600$ Volts Max |
| c. Self-Generated | none |
| Electromagnetic Interference Per MIL-STD-461 | Class 1D [3] |
| Power Loss | 1ms [2] |
| Output (Load) Parameters |  |
| Contact Form | SPST |
| Contact Rating: | 150 mA |
| Voltage Drop, Maximum | 2 Vdc |
| Leakage Current, Maximum: |  |
| a. at $\mathbf{2 8 ~ V d c ~ a n d ~} 25^{\circ} \mathrm{C}$ | 1 Microampere |
| d. at 28 Vdc and $125^{\circ} \mathrm{C}$ | 10 Microamperes |
| Dielectric Strength: |  |
| a. @ Sea Level, 60 Hz | 1,000 Vrms [4] |
| b. @ 80,000 ft., 60 Hz | 350 Vrms |
| Insulation Resistance @ 500 Vdc | 1,000 M $\Omega$ [4] |

GENERAL CHARACTERISTICS

| Ambient Temperatures Range: |  |
| :---: | :---: |
| a. Operating | -55 to $+125^{\circ} \mathrm{C}$ |
| b. Non-Operating | -55 to $+125^{\circ} \mathrm{C}$ |
| Vibration: |  |
| a. Sinusoidal |  |
| $10-55 \mathrm{~Hz}$ | 0.06 » DIA |
| $55-500 \mathrm{~Hz}$ | 10 G |
| 500-3000 Hz | 20 G |
| b. Random: 50-2000 Hz, MIL-STD-810 | $0.2 \mathrm{G}^{2} / \mathrm{Hz}$ |
| Shock @ $6 \pm 1$ MS, $1 / 2$ Sine, 3 Axis | 1,100 G |
| Acceleration, in any Axis | 100 G |
| Life at Rated Resistive Load; Minimum | 1,000,000 operations |

## MECHANICAL SPECIFICATIONS

Dimensions in inches
Tolerances, unless otherwise specified $X X X \pm .010$
$X X \pm .03$


NAMEPLATE (NEAR SIDE)
CIRCUIT DIAGRAM(FAR SIDE)


FINISH: PARA 3.4.2


## DIAGRAMS



## CIRCUIT DIAGRAM

INPUT
VOLTAGE
(X1-X2)

OUTPUT
(A3-X2)


TIMING DIAGRAM


## 1. Model Number or Basic "MIL-PRF" Series number. <br> 2. Military "Slash" number. <br> 3. Timing Range, Fixed: 100 milliseconds to 500 seconds. (See Note 6).

## NOTES

1. The accuracy specification applies for any combination of operating temperature and voltage.
2. Transient specifications are based on a maximum duty cycle of $1 / 50$.
3. EMI test limits will not be exceeded during the timing interval or when continuously energized under steady-state condition, per paragraph.
4. Terminals $\mathrm{X} 1, \mathrm{X} 2, \mathrm{~A} 1, \mathrm{~B} 1$ and A 3 must be connected together during this test. Dielectric withstanding voltage and insulating resistance are measured between all mutually insulated terminals and between all terminals and case.
5. Recycle time is defined as the maximum time that power must be removed from input terminal to assure that the next timing cycle will be completed within the specified timing tolerance. (Units can also be recycled during the time delay period).
6. A four digit number defines the time delay in seconds (or milliseconds). The first three digits are significant figures, used to define the specific time delay. The fourth digit represents the number of zeros to follow the first three digits.
Examples:
$1001=1$ second ( 1,000 milliseconds)
$2502=25$ seconds ( 25,000 milliseconds)
$5000=0.5$ seconds ( 500 milliseconds)

For any inquiries, please contact your local sales representative: leachcorp.com

