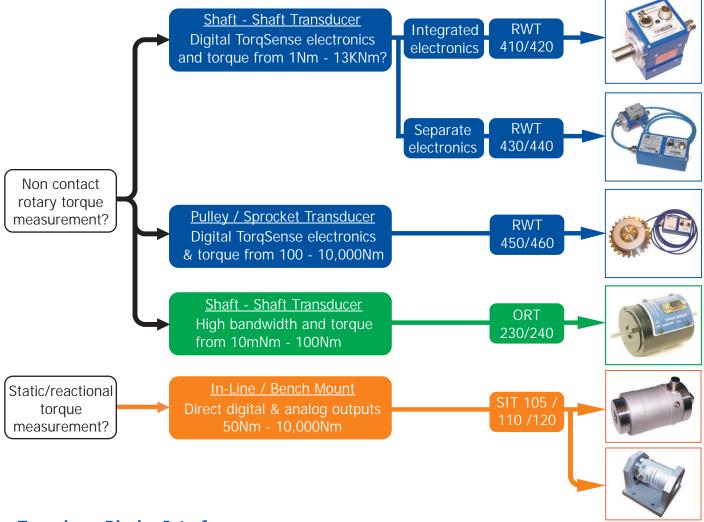


Torque Measuring Equipment Product Overview

Apollo Park, Ironstone Lane, Wroxton, Banbury, Oxon, OX15 6AY, UK Tel: +44 (0)1869 238400 Fax: +44 (0)1869 238401 Email: info@sensors.co.uk Web: www.sensors.co.uk



Sensor Technology Ltd has been specialising in providing customers with rotary torque measurement solutions for 40 years, developing its own technology for the instrumentation and OEM markets.

Torque Transducers

Our torque products include the latest integrated digital non-contact TorqSense technology rotary torque transducers. We also offer Optical rotary torque transducers and Strain Gauge technology torque transducers. Customers can specify any full scale torque range within the standard ranges to optomise accuracy.

Transducer Display Interfaces

For the RWT, ORT and SIT range of sensors , the Electronic Transducer Display interface (ETD) is available for applications where a local display is required.

TORQVIEW Advanced Monitoring Display Software

TorqView, an easy to use advanced torque monitoring software, offers real time plotting and data recording. It operates on a PC in conjunction with the RWT420/440/460 series, the ORT230/240 series and the SIT 120.

System Rental

We offer a unique system rental service for short or long term rent of our standard range of transducers. Please see Rental Terms and Conditions.

Calibration

Sensor Technology Ltd recommend that transducers are calibrated every year to ensure their accuracy and performance. The first year's calibration is free of charge. Discounts apply for regular recalibrations.

EMC

Each Transducer and Display Interface complies with EMC Regulation BS EN 55011 (10v/Metre immunity)

Obsolete Torque Equipment

Sensor Technology will be pleased to service and calibrate any of their older products which, although technically obsolete, are still functional. Please consult factory.

Warranty

Sensor Technology Ltd's standard range of torque measuring products are warranted against manufacturing defects and component failure for two years from date of purchase, subject to fair wear and tear and return for the first year's free of charge annual re-calibration. This warranty is extended indefinitely if the equipment is returned to Sensor Technology, or its distributor for annual re-calibration, when software and hardware updates, if required, will be carried out free of charge. Standard range means those products described in the company's product data sheets.

RWT410/420 series Torque Transducer

Apollo Park, Ironstone Lane, Wroxton, Banbury, Oxon, OX15 6AY, UK Tel: +44 (0)1869 238400 Fax: +44 (0)1869 238401 Email: info@sensors.co.uk Web: www.sensors.co.uk

Digital RWT410/420 series Torque Transducer

TorqSense Digital RWT410/420 series transducers with integral electronics now offer cost effective, noncontact digital rotary torque measurement, using Surface Acoustic Wave technology, suitable for torque monitoring, testing or controlling drive mechanisms. TorqSense RWT410/420 series transducers and their technology are particularly appropriate for OEM applications.

The new TorqSense RWT410/420 torque sensors replace the RWT310/320 series and feature all new electronics that have produced significant performance gains in resolution, frequency response, reduced sensor current consumption and faster digital data throughput. Transducer overload has also been increased to 300%.

Benefits

- Minimal shaft length
 High shaft stiffness
- Low inertia High Speed capability because electronics are not fixed onto shaft
- Non contact/brushless
 measurement
- High Bandwidth
- 300% safe mechanical overload
- High accuracy (0.25%) and resolution (0.02%)
- Excellent noise immunity
- Integral digital electronics
- Operates both statically and dynamically

 clockwise/anti-clockwise
- Any full scale torque can be specified within standard range: 1Nm through to 13,000Nm
- Lifetime warranty

Consult factory for ranges greater than 13KNm High speeds available on request

Technology

TorqSense patented technology is the measurement of the resonant frequency change in 'frequency dependent' Surface Acoustic Wave (SAW) devices, caused when strain is applied. The signal is coupled via a non-contact RF rotating couple from the shaft to a fixed pick-up.

Integral electronics enables the resonant frequencies to be measured and offer user selectable features, digital outputs and diagnostics. SAW devices are not affected by magnetic fields.

TorqSense RWT410 series transducers offer:

- Fixed voltage or current analog outputs (one for torque and the other for speed or power) for interfacing with analog instrumentation
- BIT Self-diagnostics for letting the manufacturer know that the transducer's torque, speed ratings and calibration due date have not been exceeded.
- Simple 'Sensor status' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy

Whereas, TorqSense RWT420 series transducers offer:

- Digital outputs, such as RS232, CANbus and USB, for interfacing with modern instrumentation and laptops
- Digital input for configuring transducer via PC
- 2 x user selectable voltage or current analog outputs (one for torque and the other for speed, power or peak torque) for interfacing with analog instrumentation
- Transducer configuration software to allow user to changes transducer variables
- BIT Self-diagnostics for letting users know data is trustworthy, that the transducer's torque, speed ratings and calibration due date have not been exceeded
- Simple 'Sensor status' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy
- Ability to connect up to 10 transducers using USB

TORQ VIEW. Software

TorqView is an easy to use advanced torque monitoring software, available to assist data recording and instrumentation displays that interface with Windows based PCs.

Features include: 3 types of display, text files compatible with Matlab and Excel and Real time chart plotting. See TorqView datasheet for more details.

LabView VIs are available for users to design their own process control applications. DLLs are also available for users to write their own custom software.

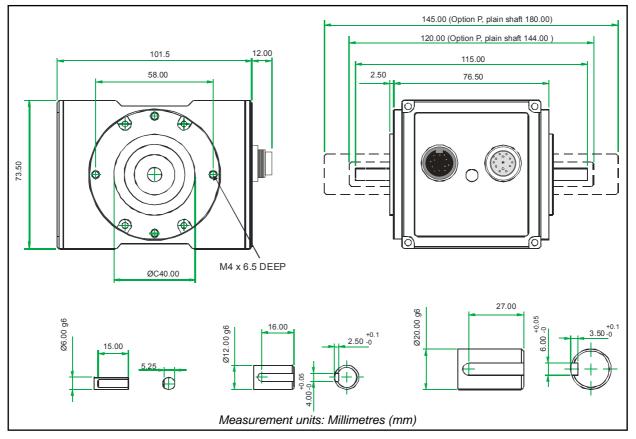
RWT410/420 Series Torque Transducers - Data Specification

Parameter	Condition				Data					Units
RWT410/420 Torque meas	surement syste	m								
Measurement method	Strain Depe	ndent Surface	e Acoustic Wav	e Resonators ((interrogate	d by an increme	ental elec	tronic scanr	ning me	thod)
Torque range	(See Notes 1 &	0 – 1	0 – 1.1	0 – 21	0 – 1			0 – 200		Ńm
1 0	2 below)		to 0 - 20	to 0 - 100	to 0 -	500 to 0 -	2000	to 0 - 13	000	
		[0 - 10]	[0 – 11	[0 - 201	[0 - 1	1001 [0 -	5001	[0 - 200	001	[lbf in
			to 0 - 200]	to 0 - 1000] to 0 - 5	5000] to 0 - 1	20000]	to 0 - 175	5000]	-
Shaft size (diameter)		6	12	20	30	5	0	75		mm
Rotation speed/angle of ro	otation measure	ement syste	m							
Measurement method				Opto switch t	through slo	tted disc				
Direct output signal	Pulse output o	direct from op	to switch (TTL	., 5V square wa	ave), output	t is independent	of any a	nalog or dig	ital pro	cessing.
Digital Processing	Processing	Method		Update ra	ite for ana	log and digita	I output	s		
Techniques	Mode 1 (Slov	/ Method)				1				Hz
Processing modes run	Frequency	Count				1				HZ
simultaneously and can be			0 R	PM		1				
applied to either analog	Mode 2 (Fast	Method)	< 200	0 RPM		RF	M			
channel or accessed	Period C									Hz
individually via a digital		ount	> 200	0 RPM	RPM	x (1 / (- 1) / 20	00] + 1))		
connection.		1								
Rotational speed (max)	(See Note 3)	30,000	20,000	15,000	12,0	00 9,0	00	6,000		RPM
Temperature										
Measurement method			IR temperat	ture sensor mo		ual shaft tempe	rature			^
Temperature accuracy					±1					O ⁰
Reference temperature, T _{RT}					20					O ⁰
Operating range, ΔT_0					-10 to +50					Oo
Storage range, ΔT _s					-20 to +70)				Oo
Temperature drift (FS)	Max				0.05					%FS/
Specifications										
Combined non-linearity and				+0.25 (+0.5	5 for 2 5Nm	and below)				%FS
nysteresis				±0.23 (±0.0						
Resolution					0.02					%FS
Repeatability					0.1					%FS
RWT410 Series Transduce										
Accuracy	20ºC, SM <i>(See</i>			±0.25 (±0.5	5 for 2.5Nm	and below)				%FS
	Note 4)									
3dB Bandwidth	(See Notes 5&6)			312 (default ave.	. = 16)				Hz
RWT420 Series Transduce				-					- 1	
Digital averaging	(See Note 5)	2	4	8	16	32	64	12	8	N
Accuracy	20°C, SM	±0.7	±0.5	±0.4	±0.25	±0.25	±0.25	±0.2	25	%FS
3dB Bandwidth	(See Note 4) (See Note 6)	2500	1250	625	212	156	78	39		11-
	(See Note b)	2500	1250	020	312	100	/8	35	,	Hz
Analog output		Onting		() 5 () 10 ()	ala alaa (D)A	T 110 Carden det			<u> </u>	Vala
Output voltages (Torque/Speed/Power)		Options				T410 Series del		ng is ±5vac)	Vdc
			(RWI			s are user selec	lable)			1/0
Load impedance					Maximum 1					KΩ
Output currents						/ 0-20 / 12±8	habla)			mA
(Torque/Speed/Power)			(RVVI			s are user selec	lable)			0
4-20mA Loop resistance				Snou	d not excee	ed 400				Ω
Digital output (RWT420 Se	eries Transduce			1	DC000		T		. D	
Connections	CAN DOD 11	CAN Bus		Det- D'I - C	RS232		-			a al
Configuration	CAN 2.0B, 11					ne, Stop Bits: 1		USB 2.0 F		ed
Baud Rate(s)	1 Mbps, 500 Kb	os, 250 Kbps,	100 Kbps	115200 bp	os, 38400 b	ps, 9600 bps		12 N		
Output Rate <i>(Note 7)</i>	U	p to 10 KHz			Up to 1.1 K	Hz		e Transfer Transfer		o 500 H
Power supply							вик	TIANSIE	Up t	o 10 KH
Nominal voltage, Vs				1	2 to 32 (ma	ax)				V
Current consumption, I_s					(max) @ 12					mA
Power consumption, W_s				200	3					W
Allowed residual ripple of					500					mVp-
supply voltage, V _{ripple}				(above no	ominal supp	lv voltage)				
i j j i j j j j i j ppic	ility					,				
						0/			-	
Electromagnetic compatib				FI	N 61326:20	106				
	s possible between	ranges – pleas	se specify max		N 61326:20	06				

Note 4: SM – Static Mode. Dynamic values will depend upon user application and has to be adjusted accordingly.

Note 5: Digital averaging can be configured by user to optimise accuracy/frequency response for specific user applications. Digital averaging default setting is N=16. For details see User Manual.

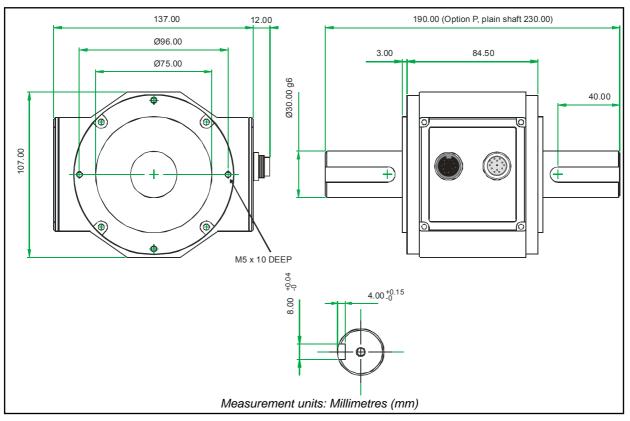
Note 6: >5Khz Sample Rate. Up to 10Khz sample rate possible, please consult factory. Digital averaging also affects the analog output, max analog output 3dB Bandwidth = 5Khz when digital average is 1.


Note 7: Output rate figures are calculated from the time taken to capture 10000 torque readings. Testing was conducted with each connection method configured at its maximum baud rate. The maximum output rate available for CAN and USB is dependent on the transducers setup. USB - USB is a host based bus architecture, because of this the output rate achievable will be affected by other bus traffic and host activity. USB has two transfer modes, Single Transfer which requests 1 reading at a time and Bulk Transfer which transfers readings in blocks of 50 Torque/Speed pairs. CAN Bus - to achieve a Torque reading output rate of 10KHz, the Speed reading output rate must be reduced to 100Hz.

Data parameters measured at +20°C

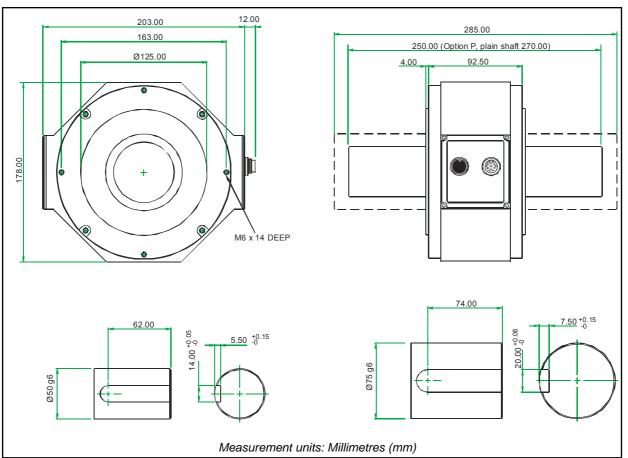
Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

RWT410/420 Series Torque Transducers


Dimensions (1Nm to 100Nm)

Parameter							Data						Units
Mechanical Prop	erties												
Torque (Max)	1	2.5	3.9	6	8.5	13	17.5	20	30	55	85	100	Nm
Shaft Code	CF	DA	DF	DB	DC	DG	DD	DE	EB	EC	ED	EE	
Shaft Size (Diameter)	6				12					2	20		mm
Torsional Stiffness	0.23	1.28	1.3	1.32	1.6	1.7	1.8	1.9	4.1	6.4	8.1	9.2	KNm/rad
Mass moment of inertia, L _v	0.45	5.96	6.00	6.04	6.13	6.18	6.24	6.42	22.9	23.9	25.4	27.2	×10⁻⁰ kg m²
Max measurable load limit					1	20 (of ra	ated torque	e)					%
Static safe load breaking					3	00 (of ra	ated torque	e)					%
Shaft weight, approx	0.03	0.14	0.14	0.14	0.14	0.15	0.15	0.15	0.36	0.37	0.40	0.41	kg
Transducer with shaft weight, approx	0.7	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.0	1.0	1.1	1.1	kg

RWT410/420 Series Torque Transducers


Dimensions (101Nm to 500Nm)

Parameter			Data			Units
Mechanical Propert	ies					
Torque (Max)	175	225	265	350	500	Nm
Shaft Code	FA	FB	FC	FD	FE	
Shaft Size (Diameter)		·	30	·		mm
Torsional stiffness	32.9	35.6	37.2	37.9	39.8	kNm/rad
Mass moment of inertia	138.9	143.1	147.7	151.9	174.2	^x 10 ⁻⁶ kg ⁻ m ²
Max measurable load limit			120 (of rated tor	que)		%
Static safe load breaking		:	300 (of rated tor	que)		%
Shaft weight, approx	1.1	1.1	1.1	1.2	1.2	kg
Transducer with shaft weight, approx	2.4	2.4	2.4	2.5	2.5	kg

RWT410/420 Series Torque Transducers

Dimensions (501Nm to 13000Nm)

Parameter					[Data					Units
Mechanical Prop	erties										
Torque (Max)	650	850	1100	1350	2000	3000	4000	6000	10000	13000	Nm
Shaft Code	GE	GA	GB	GC	GD	HA	HB	HC	HF	HG	
Shaft Size (Diameter)			50					75			mm
Torsional Stiffness	TBC	TBC	199.2	TBC	214.1	TBC	TBC	914.4	945.5	TBC	kNm/rad
Mass moment of inertia	TBC	TBC	1330	TBC	1497	TBC	TBC	7932.7	9407.1	TBC	[×] 10 ⁻⁶ kg m ²
Max measurable load limit					120 (of r	ated torq	ue)				%
Static safe load breaking					300 (of r	ated torq	ue)				%
Shaft weight, approx	TBC	TBC	3.9	TBC	4.1	TBC	TBC	10.2	10.6	11.2	kg
Transducer with shaft weight, approx	TBC	TBC	7.1	TBC	7.3	TBC	TBC	13.4	13.8	14.4	kg

RWT410/420 Series Torque Transducers - Standard Range

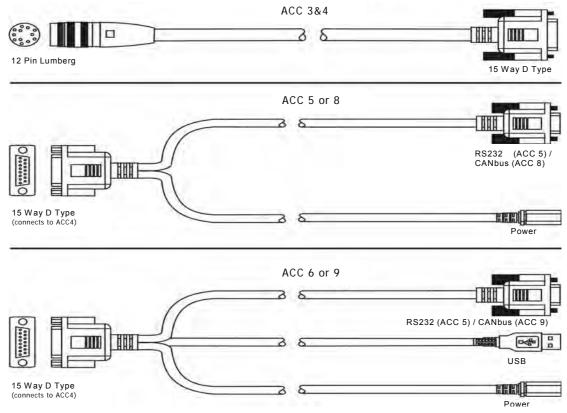
	_	10/420 ries	Option Code	Remarks
Torque, Speed, Power Outputs	RWT410	RWT420		
Torque only	410	420		
Torque & Speed (60 pulses/rev)	411			User to specify RPM/FSD when ordering
Torque & Speed (360 pulses/rev)	412			Not yet available
Torque & Power (60 pulses/rev)	413			User to specify Power/FSD when ordering
Torque & Speed (60 pulses/rev) or Power		421		Outputs are user selectable
Torque & Speed (360 pulses/rev) or Power		422		Not yet available
Standard features				
Keyed Shaft Ends	•	•	К	1Nm will have flats
Voltage output ±5v FSD (Fixed)	•		В	
Voltage outputs from ±1v to ±10v FSD and unipolar (Variable)		•		Output is user selectable
RS232 output		•		
Torque Averaging and Torque Peak		•		
Self Diagnostics	•	•		
Internal temperature measurement	•	•		Value available on RWT420 series only
Deep grooved shielded bearings with oil lubrication	•	•		
Ingress Protection (IP) 54	•	•		
Optional features				
Plain Shaft Ends	\$	\$	Р	Shaft length will be longer than keyed end shafts – consult factory for length
Splined Shaft Ends	\$	\$	Т	Consult factory for details
Voltage output ±1v FSD (Fixed)	\$		А	In place of Option B
Voltage output ±10v FSD (Fixed)	\$		С	In place of Option B
Customer Specified Voltage Output (Fixed)	\$		U	In place of Option B. User to specify range/scale when ordering
Current output 0-20mA (Fixed)	\$		D	In place of Voltage output options
Current output 4-20mA (Fixed)	\$		E	In place of Voltage output options
Current output 12±8mA (Fixed)	\$		V	In place of Voltage output options
Current output 0-20mA, 4-20mA & 12±8mA (Variable)		\$	F	<i>Current output is user</i> <i>selectable and in place of</i> <i>Voltage output. However</i> <i>user can reselect a Voltage</i> <i>output, if required. (Note 8)</i>
USB 2.0 full speed 12 Mbps Digital output		\$	G	
CANbus output		\$	H	In place of RS232 ouput
High Speed Bearings (See Note 9 below)	\$	\$	J	
Sealed Bearings	\$	\$	S	- Consult factory for maximum
Ingress Protection (IP) 65				speed allowance.
(See Note 10 below)	\$	\$	L	

• – Standard feature ♦ – Optional feature

Note 8: 2 x analog channels available. Default settings are Channel 1 (voltage/current) – torque.

Channel 2 (voltage/current) – speed or power, if ordered.

Note 9: At very high speeds, for better balance the factory recommend plain or splined shafts. Note 10: Transducers fitted for IP65 will have running speeds considerably reduced, increased drag torque and accuracy can be affected.


Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice. © Sensor Technology Ltd 2015 RWT3722R (Rev5)

		10/420 ries	Option Code	Remarks/Purpose
Connectors & Leads	RWT410	RWT420		
Analog Connector 12 Pin Lumberg (female)	\$	\$	ACC 1	For user to self wire
Digital Connector 12 Pin Lumberg (male)		\$	ACC 2	For user to self wire
Analog Lead (Length 2.5m) 12 Pin Lumberg (female) to 15 way 'D' type connector (female)	\$	\$	ACC 3	For connecting RWT to user's system via 15 pin 'D' connector
Digital Lead (Length 2.5m) 12 Pin Lumberg (male) to 15 way 'D' type connector (male)		\$	ACC 4	For connecting RWT to user's system via 15 pin 'D' connector
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to RS232 and Power Connectors		\$	ACC 5	For connecting RWT to PC via RS232 [Also needs Digital Lead (ACC4) to connect to RWT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to RS232, USB and Power Connectors		\$	ACC 6	For connecting RWT to PC via USB (Option G) or RS232 [Also needs Digital Lead (ACC4) to connect to RWT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to CANbus and Power Connectors		\$	ACC 8	For connecting RWT to PC via CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to RWT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to CANbus, USB and Power Connectors		\$	ACC 9	For connecting RWT to PC via USB (Option G) or CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to RWT]

RWT410/420 Series Torque Transducers – Additional related products

	Code	Remarks/Purpose
Transducer Display ETD	ETD	Display readout
AC Mains Adapter Power Supply	PSU 1	For providing 12-32Vdc
Transducer Signal Breakout Unit	SBU 1	
TorqView	TV	Torque Monitoring Software

Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

When ordering a Torque Transducer please note that any torque/FSD is possible between ranges – please specify rated torque and options using the following format:

For example: <i>RWT</i>	411 - 15Nm -	K-CL	A 'basic' transducer with torque and speed outputs, rated and calibrated to 15Nm FSD with keyed ends, ±10v and IP65 protection.
Your transducer requirement: RWT			
Max speed (if applicable)		RPM	
Connector & Lead options		(if applicable	e) See over
Additional related products		(if applicable	e) See over

Glossary of terms and definitions used in this datasheet

- Surface Acoustic Wave (SAW) An acoustic wave travelling along the surface of a material having some elasticity, with amplitude that typically decays exponentially with the depth of the substrate.
- Strain dependent SAW resonators A type of elastic SAW device, which changes its resonant properties when it is subjected to axial strain/compression. TorqSense uses this principle, which is protected by a number of patents.
- Incremental Electronic Scan (IES) The most successful and precise method for interrogating strain dependent SAW resonators. The IES interrogation method uses a processor controlled frequency synthesiser to excite the SAW resonators over a defined range of frequencies and measure the reflected signal. TorqSense uses this patented method.
- **Resolution of the IES method** The minimum measurable number corresponding to the stress/strain sensitive resonance point of the SAW resonator. The value is limited by following the factors:
 - frequency resolution of the synthesiser, which is 1000 times greater then overall resolution of the system.
 - relationship between frequency response and resolution. Increments of the resolution will proportionally decrease the system's frequency response. TorqSense systems are optimised for the best performance that suits most applications. However, on the RWT420 series models customers do have the capability to adjust the system performance.
- *Frequency response of the IES method* The measure of the TorqSense system's response at the output to a signal of varying frequency at its input. The frequency response is typically characterised by the magnitude of the system's response, measured in dB. There are two ways of characterising the system's frequency response:
 - 0.1dB frequency range, where the output magnitude of the signal is different to the input magnitude of the signal by not more then 0.1dB (practically absolutely identical).
 - 3dB frequency range, where the output magnitude of the signal is 0.707 of the input signal. This is a common standard for most applications, unless it specifically says otherwise. This standard is also used to characterise the TorqSense system's frequency response.
- Accuracy The degree of conformity of a measured or calculated quantity, which will show the same or similar results. Accuracy of the overall TorqSense system is limited by the combined error of several factors such as linearity, hysteresis, temperature drifts and other parameters affecting measurements. If errors in the system are known or can be estimated, an overall error or uncertainty of measurement can be calculated.
- **Digital averaging** The application of algorithms to reduce white noise. In any electronic system, electronic white noise is mixed with the signal and this noise usually limits the accuracy. To reduce the influence of white noise and increase the accuracy of the system different averaging algorithms can be applied. In the TorqSense system a flying digital averaging technique is applied to reduce the white noise commensurate with the level of accuracy required. However, as any averaging algorithm works as a low pass filter, the more averaging that is applied the lower the frequency response. Therefore, each Torqsense system should be optimised to the customer's requirements by choosing the right combination of accuracy/frequency response. Please see relevant part of the Datasheet and User Manual.

RWT430/440 series Torque Transducer

Apollo Park, Ironstone Lane, Wroxton, Banbury, Oxon, OX15 6AY, UK Tel: +44 (0)1869 238400 Fax: +44 (0)1869 238401 Email: info@sensors.co.uk Web: www.sensors.co.uk

Digital RWT430/440 series Torque Transducer

TorqSense Digital RWT430/440 series transducers with separate electronics now offer cost effective, noncontact digital rotary torque measurement, using Surface Acoustic Wave technology, suitable for torque monitoring, testing or controlling drive mechanisms. TorqSense RWT430/440 series transducers and their technology are particularly appropriate for OEM applications.

The new TorqSense RWT430/440 torque sensors replace the RWT330/340 series and feature all new electronics that have produced significant performance gains in resolution, frequency response, reduced sensor current consumption and faster digital data throughput. Transducer overload has also been increased to 300%.

Benefits

- Minimal shaft length
 High shaft stiffness
- Low inertia High Speed capability because electronics are not fixed onto shaft
- Non contact/brushless measurement
- High Bandwidth
- 300% safe mechanical overload
- High accuracy (0.25%) and resolution (0.02%)
- Excellent noise immunity
- Separate digital electronics
- Operates both statically and dynamically

 clockwise/anti-clockwise
- Any full scale torque can be specified within standard range: 1Nm through to 13,000Nm
- Lifetime warranty

Consult factory for ranges greater than 13KNm High speeds available on request

Technology

TorqSense patented technology is the measurement of the resonant frequency change in 'frequency dependent' Surface Acoustic Wave (SAW) devices, caused when strain is applied. The signal is coupled via a non-contact RF rotating couple from the shaft to a fixed pick-up.

A separate electronics module enables the resonant frequencies to be measured and offer user selectable features, digital outputs and diagnostics. SAW devices are not affected by magnetic fields.

TorqSense RWT430 series transducers offer:

- Fixed voltage or current analog outputs (one for torque and the other for speed or power) for interfacing with analog instrumentation
- BIT Self-diagnostics for letting the manufacturer know that the transducer's torque, speed ratings and calibration due date have not been exceeded.
- Simple 'Sensor status' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy

Whereas, TorqSense RWT440 series transducers offer:

- Digital outputs, such as RS232, CANbus and USB, for interfacing with modern instrumentation and laptops
- Digital input for configuring transducer via PC
- 2 x user selectable voltage or current analog outputs (one for torque and the other for speed, power or peak torque) for interfacing with analog instrumentation
- Transducer configuration software to allow user to changes transducer variables
- BIT Self-diagnostics for letting users know data is trustworthy, that the transducer's torque, speed ratings and calibration due date have not been exceeded
- Simple 'Sensor status' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy
- Ability to connect up to 10 transducers using USB

TORQ VIEW. Software

TorqView is an easy to use advanced torque monitoring software, available to assist data recording and instrumentation displays that interface with Windows based PCs.

Features include: 3 types of display, text files compatible with Matlab and Excel and Real time chart plotting. See TorqView datasheet for more details.

LabView VIs are available for users to design their own process control applications. DLLs are also available for users to write their own custom software.

RWT430/440 Series Torque Transducers - Data Specification

	Condition					Data					Units
RWT430/440 Torque meas	surement syste	m									
Measurement method	Strain Depe	ndent Surface	e Acoustic Wa	ve Resonator	s (int	terrogated by a	n incremer	ntal elect	ronic scan	ning me	thod)
Torque range	(See Notes 1 &	0 – 1	0 – 1.1	0 – 21		0 – 101	0 - 5		0 – 20		Nm
	2 below)		to 0 - 20	to 0 - 10		to 0 - 500	to 0 - 2		to 0 - 13		
		[0 - 10]	[0 – 11 to 0 - 200]	[0 – 20 to 0 - 10		[0 – 1001 to 0 - 5000]	[0 – 5 to 0 - 2		[0 – 20 to 0 - 17:		[lbf in]
Shaft size (diameter)		6	12	20	001	30	50	-	75		mm
Rotation speed/angle of ro	otation measure	ement syster	m								
Measurement method				Opto switc	h thro	ough slotted di	SC				
Direct output signal	Pulse output o	lirect from op	to switch (TTI	, 5V square	wave), output is ind	ependent	of any ar	nalog or dig	gital pro	cessing.
Digital Processing	Processing	Method		Update	rate	for analog an	nd digital	outputs	5		
Techniques	Mode 1 (Slow	/ Method)				1					Hz
Processing modes run	Frequency	Count				I					112
simultaneously and can be			0 F	RPM			1				
applied to either analog	Mode 2 (Fast	Method)	< 200	0 RPM			RPN	Л			
channel or accessed	Period C										Hz
ndividually via a digital connection.			> 200	0 RPM		RPM x (1/	([(RPM -	1) / 200)0] + 1))		
Rotational speed (max)	(See Note 3)	30,000	20,000	15,000		12,000	9,00	0	6,00	0	RPM
Temperature	(000 11010 0)	30,000	20,000	13,000	5	12,000	9,00	0	0,00	0	
Veasurement method			IP tompora	turo sonsor r	nonit	oring actual sha	aft tomnor	aturo			
Temperature accuracy			in tempera		nomu	±1	an temper	ature			°C
Reference temperature, T_{RT}						20					°C
Operating range, ΔT_0					-1	0 to +50					°C
Storage range, ΔT_s						0 to +70					°C
Temperature drift (FS)	Max				-2	0.05					%FS/ ⁰
Specifications	Max					0.00					701 5/
Combined non-linearity and					_						
nysteresis				±0.25 (±	0.5 fc	or 2.5Nm and b	elow)				%FS
Resolution						0.02					%FS
Repeatability						0.1					%FS
RWT430 Series Transducer	rs ONLY										
Accuracy	20 ⁰ C, SM <i>(See</i> <i>Note 4)</i>			±0.25 (±	0.5 fc	or 2.5Nm and b	elow)				%FS
3dB Bandwidth	(See Notes 5&6)			312	2 (def	ault ave. = 16)					Hz
RWT440 Series Transducer	rs ONLY			-	(1 1						
Digital averaging	(See Note 5)	2	4	8	16	6 32		64	12	28	N
Accuracy	20ºC, SM <i>(See Note 4)</i>	±0.7	±0.5	±0.4	±0.	25 ±0.2	25	±0.25	±0.	.25	%FS
3dB Bandwidth	(See Note 6)	2500	1250	625	31	2 156	5	78	3	9	Hz
Analog output							-				
Output voltages		Options	available: ±1	/ ±5 / ±10 /	Unip	olar (RWT430	Series defa	ult settir	ng is ±5Vda	:)	Vdc
(Torque/Speed/Power)						t voltages are ι			5	<i>,</i>	
Load impedance					Ma	aximum 1					KΩ
Output currents				Options av	vailab	ole: 4-20 / 0-20	/ 12±8				mA
(Torque/Speed/Power)			(RW1	440 Series o	output	t currents are ι	iser selecta	able)			
4-20mA Loop resistance				Sho	ould r	not exceed 400					Ω
Digital output (RWT440 Se	eries Transduce										
Connections		CAN Bus				RS232			_	SB	
Configuration	CAN 2.0B, 11	bit Message Io	dentifiers			arity: None, Sto			USB 2.0 F	Full-Spe	ed
Baud Rate(s)	1 Mbps, 500 Kb	os, 250 Kbps,	100 Kbps	115200	bps,	38400 bps, 96	00 bps		12 N	Mbps	
Output Rate (Note 7)	U	p to 10 KHz			Up	to 1.1 KHz			Transfer Fransfer		o 500 Hz o 10 KHz
Power supply				1				Buik			
Nominal voltage, V _s					12 to	o 32 (max)					V
Current consumption, Is				23		ax) @ 12 VDC					mA
Power consumption, W_s				20	- (11	3					W
						500					mVp-p
Allowed residual ripple of				(above	nomi	inal supply volt	aqe)				
Allowed residual ripple of supply voltage, V _{ripple}		•		•			<u> </u>				
supply voltage, V _{ripple}	ility										
	ility				EN 6	51326:2006					

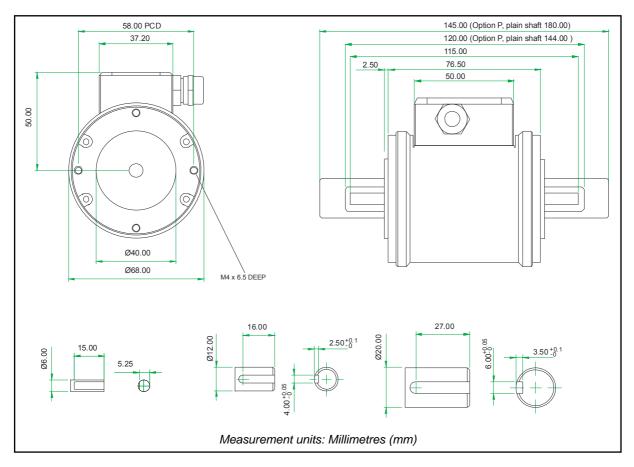
running speeds considerably reduced, increased drag torque and accuracy can be affected.

Note 4: SM – Static Mode. Dynamic values will depend upon user application and has to be adjusted accordingly.

 Note 5:
 Digital averaging can be configured by user to optimise accuracy/frequency response for specific user applications. Digital averaging default setting is N=16. For details see User Manual.

 Note 6:
 >5Khz Sample Rate. Up to 10Khz sample rate possible, please consult factory. Digital averaging also affects the analog output, max analog output

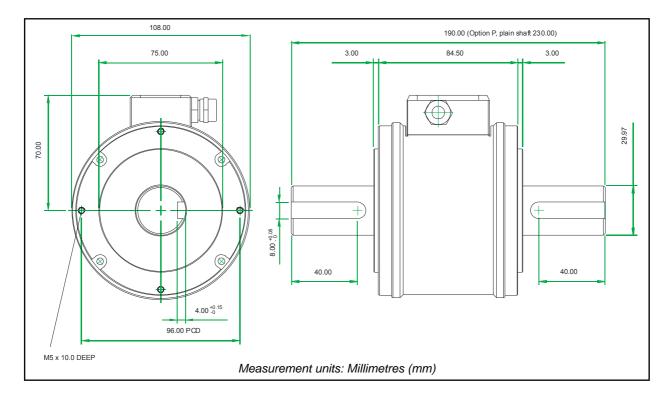
Note 6: >5Kn2 sample rate. Up to Tokn2 sample rate possible, please consult factory. Digital averaging also affects the analog output, max analog output 3dB Bandwidth = 5Khz when digital average is 1.


Note 7: Output rate figures are calculated from the time taken to capture 10000 torque readings. Testing was conducted with each connection method configured at its maximum baud rate. The maximum output rate available for CAN and USB is dependent on the transducers setup. USB - USB is a host based bus architecture, because of this the output rate achievable will be affected by other bus traffic and host activity. USB has two transfer modes, Single Transfer which requests 1 reading at a time and Bulk Transfer which transfers readings in blocks of 50 Torque/Speed pairs. CAN Bus - to achieve a Torque reading output rate of 10KHz, the Speed reading output rate must be reduced to 100Hz.

Data parameters measured at +20°C

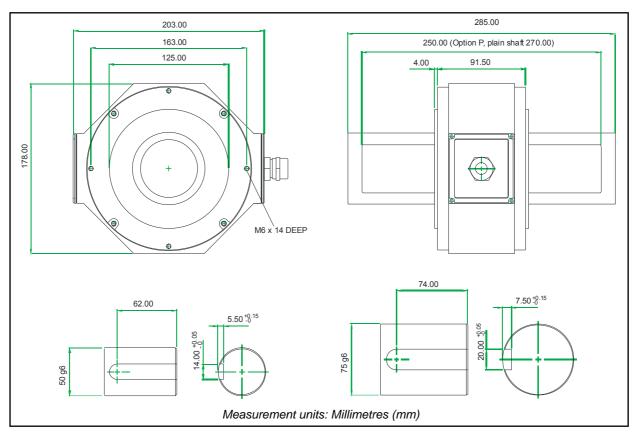
Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

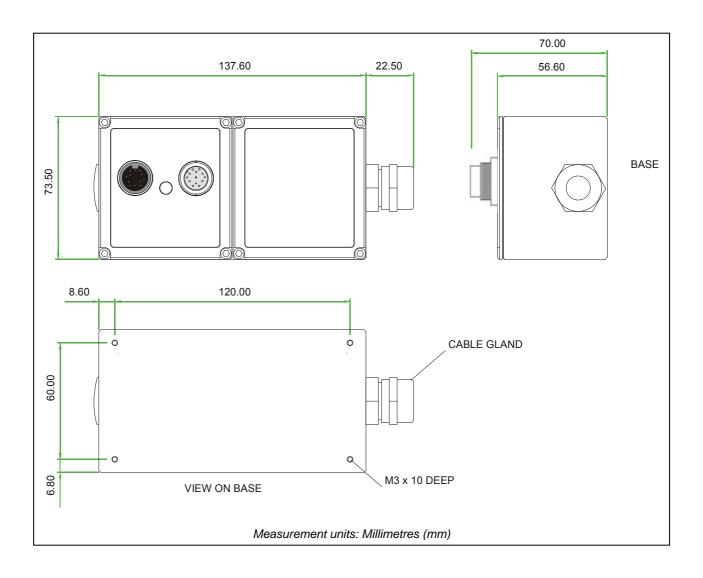
RWT430/440 Series Torque Transducers


Dimensions (1Nm to 100Nm)

Parameter						D	ata						Units
Torque (Max)	1	2.5	3.9	6	8.5	13	17.5	20	30	55	85	100	Nm
Shaft Code	CF	DA	DF	DB	DC	DG	DD	DE	EB	EC	ED	EE	
Shaft Size (Diameter)	6				12					2	20		mm
Torsional Stiffness	0.23	1.28	1.3	1.32	1.6	1.7	1.8	1.9	4.1	6.4	8.1	9.2	KNm/rad
Mass moment of inertia, L _v	0.45	5.96	6.00	6.04	6.13	6.18	6.24	6.42	22.9	23.9	25.4	27.2	[×] 10 ⁻⁶ kg [·] m ²
Max measurable load limit					1	20 (of ra	ated torqu	e)					%
Static safe load breaking					3	00 (of ra	ated torqu	e)					%
Shaft weight, approx	0.03	0.14	0.14	0.14	0.14	0.15	0.15	0.15	0.36	0.37	0.40	0.41	kg
Transducer with shaft weight, approx (1 dp)	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.7	0.9	0.9	0.9	0.9	kg

RWT430/440 Series Torque Transducers


Dimensions (101Nm to 500Nm)


Parameter			Data			Units
Mechanical Propert	ties					
Torque (Max)	175	225	265	350	500	Nm
Shaft Code	FA	FB	FC	FD	FE	
Shaft Size (Diameter)			30			mm
Torsional stiffness	32.9	35.6	37.2	37.9	39.8	kNm/rad
Mass moment of inertia	138.9	143.1	147.7	151.9	174.2	^x 10 ⁻⁶ kg·m ²
Max measurable load limit		1	20 (of rated tor	que)		%
Static safe load breaking		3	00 (of rated tor	que)		%
Shaft weight, approx	1.1	1.1	1.1	1.2	1.2	kg
Transducer with shaft weight, approx (1 dp)	2.3	2.3	2.3	2.4	2.4	kg

RWT430/440 Series Torque Transducers

Dimensions (501Nm to 13000Nm)

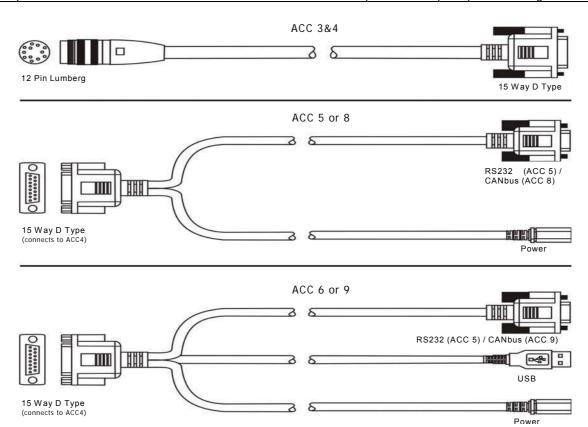
Parameter						Data					Units
Mechanical Prop	erties										
Torque (Max)	650	850	1100	1350	2000	3000	4000	6000	10000	13000	Nm
Shaft Code	GE	GA	GB	GC	GD	HA	HB	HC	HF	HG	
Shaft Size (Diameter)			50					75			Mm
Torsional Stiffness	TBC	TBC	199.2	TBC	214.1	TBC	TBC	914.4	945.5	TBC	kNm/rad
Mass moment of inertia	TBC	TBC	1330	TBC	1497	TBC	TBC	7932.7	9407.1	TBC	×10⁻ ⁶ kg⁻m²
Max measurable load limit					120 (of	rated tor	que)				%
Static safe load breaking					300 (of	rated tor	que)				%
Shaft weight, approx	TBC	TBC	3.9	TBC	4.1	TBC	TBC	10.2	10.6	11.2	kg
Transducer with shaft weight, approx	TBC	TBC	7.1	TBC	7.3	TBC	TBC	13.4	13.8	14.4	kg

RWT430/440 Series Torque Transducers - Standard Range

• – Stand	RWT43	♦ – Optiona 30/440 ries	Option Code	Remarks
Torque, Speed, Power Outputs	RWT430	RWT440		
Torque only	430	440		
Torque & Speed (60 pulses/rev)	431			User to specify RPM/FSD when ordering
Torque & Power (60 pulses/rev)	433			User to specify Power/FSD when ordering
Torque & Speed (60 pulses/rev) or Power		441		Outputs are user selectable
Standard features				
Keyed Shaft Ends	•	•	К	1Nm will have flats
Voltage output ±5v FSD (Fixed)	•		В	
Voltage outputs from $\pm 1v$ to $\pm 10v$ FSD and unipolar (Variable)		•		Output is user selectable
RS232 output		•		
Torque Averaging & Torque Peak		•		
Self Diagnostics	•	•		
Internal temperature measurement	•	•		Value available on RWT440 series only
Deep grooved shielded bearings with oil lubrication	•	•		
Ingress Protection (IP) 54	•	•		
Link Cable (1.5m)	•	•		From sensor head to electronics module
Optional features				
Plain Shaft Ends	\$	\$	Р	Shaft length will be longer than keyed end shafts – consult factory for length
Splined Shaft Ends	\$	\$	Т	Consult factory for details
Voltage output ±1v FSD (Fixed)	\$		A	In place of Option B
Voltage output ±10v FSD (Fixed)	\$		С	In place of Option B
Customer Specified Voltage Output (Fixed)	\$		U	In place of Option B. User to specify range/scale when ordering
Current output 0-20mA (Fixed)	\$		D	In place of Voltage output options
Current output 4-20mA (Fixed)	\$		E	In place of Voltage output options
Current output 12±8mA (Fixed)	\$		V	In place of Voltage output options
Current output 0-20mA, 4-20mA & 12±8mA (Variable)		\$	F	Current output is user selectable and in place of Voltage output. However user can reselect a Voltage output, if required. (Note 8)
USB2.0 full speed 12 Mbps Digital output		\$	G	
CANbus output		\$	Н	In place of RS232
High Speed Bearings (See Note 9 below)	\$	\$	J	
Sealed Bearings	\$	\$	S	Consult factory for maximum
Ingress Protection (IP) 65 –for sensor and electronics (See Note 10 below)	\$	\$	L	speed allowance
Ingress Protection (IP) 65 – Cavity 'D' connectors in lead b/w sensor & electronics	\$	\$	М	
Cavity 'D' connectors in lead b/w sensor & electronics	\$	\$	Ν	
Link Cable (>1.5m)	\$	\$	R	Consult factory for length

Note 8: 2 x analog channels available. Default settings are Channel 1 (voltage/current) – torque. Channel 2 (voltage/current) – speed or power, if ordered.

Note 9: At very high speeds, for better balance the factory recommend plain or splined shafts. Note 10: Transducers fitted for IP65 will have running speeds considerably reduced, increased drag torque and accuracy can be affected.


Data parameters measured at +20°C

		30/440 ries	Option Code	Remarks/Purpose
Connectors & Leads	RWT430	RWT440		
Analog Connector <i>12 Pin Lumberg (female)</i>	\$	\$	ACC 1	For user to self wire
Digital Connector <i>12 Pin Lumberg (male)</i>		\$	ACC 2	For user to self wire
Analog Lead (Length 2.5m) <i>12 Pin Lumberg (female) to 15 way 'D'</i> <i>type connector (female)</i>	\$	\$	ACC 3	For connecting RWT to user's system via 15 pin 'D' connector
Digital Lead (Length 2.5m) <i>12 Pin Lumberg (male) to 15 way 'D'</i> <i>type connector (male)</i>		\$	ACC 4	For connecting RWT to user's system via 15 pin 'D' connector
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to RS232 and Power Connectors		\$	ACC 5	For connecting RWT to PC via RS232 [Also needs Digital Lead (ACC4) to connect to RWT]
Digital Lead Adapter (Length 1m) <i>15 Way 'D' type (female) to RS232, USB and Power Connectors</i>		\$	ACC 6	For connecting RWT to PC via USB (Option G) or RS232 [Also needs Digital Lead (ACC4) to connect to RWT]
Digital Lead Adapter (Length 1m) <i>15 Way 'D' type (female) to CANbus and</i> <i>Power Connectors</i>		\$	ACC 8	For connecting RWT to PC via CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to RWT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to CANbus, USB and Power Connectors		\$	ACC 9	For connecting RWT to PC via USB (Option G) or CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to RWT]

RWT430/440 Series Torque Transducers – Connector and Lead Options

RWT430/440 Series Torque Transducers – Additional related products

	Code	Remarks/Purpose
Transducer Display ETD	ETD	Display readout
AC Mains Adapter Power Supply	PSU 1	For providing 12-32Vdc
Transducer Signal Breakout Unit	SBU 2	
TorqView	TV	Torque Monitoring Software

Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

When you order a Torque Transducer please note that any torque/FSD is possible between ranges – please specify rated torque and options using the following format:

For example: RWT	431 - 15Nm -	K-CL	A 'basic' transducer with torque and speed outputs, rated and calibrated to 15Nm FSD with keyed ends, ±10v and IP65 protection.
Your transducer requirement: <i>RWT</i>			•
Max speed (if applicable)		RPM	
Connector & Lead options		(if applicable	e) See over
Additional related products		(if applicable	e) See over

Glossary of terms and definitions used in this datasheet

- Surface Acoustic Wave (SAW) An acoustic wave travelling along the surface of a material having some elasticity, with amplitude that typically decays exponentially with the depth of the substrate.
- Strain dependent SAW resonators A type of elastic SAW device, which changes its resonant properties when it is subjected to axial strain/compression. TorqSense uses this principle, which is protected by a number of patents.
- Incremental Electronic Scan (IES) The most successful and precise method for interrogating strain dependent SAW resonators. The IES interrogation method uses a processor controlled frequency synthesiser to excite the SAW resonators over a defined range of frequencies and measure the reflected signal. TorqSense uses this patented method.
- **Resolution of the IES method** The minimum measurable number corresponding to the stress/strain sensitive resonance point of the SAW resonator. The value is limited by following the factors:
 - frequency resolution of the synthesiser, which is 1000 times greater then overall resolution of the system.
 - relationship between frequency response and resolution. Increments of the resolution will proportionally
 decrease the system's frequency response. TorqSense systems are optimised for the best performance
 that suits most applications. However, on the RWT440 series models customers do have the capability
 to adjust the system performance.
- *Frequency response of the IES method* The measure of the TorqSense system's response at the output to a signal of varying frequency at its input. The frequency response is typically characterised by the magnitude of the system's response, measured in dB. There are two ways of characterising the system's frequency response:
 - 0.1dB frequency range, where the output magnitude of the signal is different to the input magnitude of the signal by not more then 0.1dB (practically absolutely identical).
 - 3dB frequency range, where the output magnitude of the signal is 0.707 of the input signal. This is a common standard for most applications, unless it specifically says otherwise. This standard is also used to characterise the TorqSense system's frequency response.
- **Accuracy** The degree of conformity of a measured or calculated quantity, which will show the same or similar results. Accuracy of the overall TorqSense system is limited by the combined error of several factors such as linearity, hysteresis, temperature drifts and other parameters affecting measurements. If errors in the system are known or can be estimated, an overall error or uncertainty of measurement can be calculated.
- **Digital averaging** The application of algorithms to reduce white noise. In any electronic system, electronic white noise is mixed with the signal and this noise usually limits the accuracy. To reduce the influence of white noise and increase the accuracy of the system different averaging algorithms can be applied. In the TorqSense system a flying digital averaging technique is applied to reduce the white noise commensurate with the level of accuracy required. However, as any averaging algorithm works as a low pass filter, the more averaging that is applied the lower the frequency response. Therefore, each Torqsense system should be optimised to the customer's requirements by choosing the right combination of accuracy/frequency response. Please see relevant part of the Datasheet and User Manual.

Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

RWT450/460 series Pulley / Sprocket Torque Transducer

Apollo Park, Ironstone Lane, Wroxton, Banbury, Oxon, OX15 6AY, UK Tel: +44 (0)1869 238400 Fax: +44 (0)1869 238401 Email: info@sensors.co.uk Web: www.sensors.co.uk

Digital RWT450/460 series Torque Transducer

TorqSense Digital RWT450/460 series pulley / sprocket transducers with seperate electronics now offer cost effective, non-contact digital rotary torque measurement, using Surface Acoustic Wave technology, suitable for torque monitoring and process control on any belt / chain driven machinery. TorqSense transducers and their technology are particularly appropriate for OEM applications.

The new TorqSense RWT450/460 torque sensors replace the RWT350/360 series and feature all new electronics that have produced significant performance gains in resolution, frequency response, reduced sensor current consumption and faster digital data throughput. Transducer overload has also been increased to 300%.

Benefits

- Direct replacement for standard pulley/sprocket
- Low inertia High Speed capability because electronics are not fixed onto shaft
- Non contact/brushless measurement
- High Bandwidth
- 300% safe mechanical overload
- High accuracy and resolution
- Excellent noise immunity
- Separate digital electronics
- Operates both statically and dynamically
 clockwise/anti-clockwise
- Any full scale torque can be specified within standard range: 50Nm through to 10,000Nm
- Lifetime warranty

Consult factory for ranges greater than 10KNm High speeds available on request

Technology

TorqSense patented technology is the measurement of the resonant frequency change in 'frequency dependent' Surface Acoustic Wave (SAW) devices, caused when strain is applied. The signal is coupled via a non-contact RF rotating couple from the shaft to a fixed pick-up.

A separate electronics module enables the resonant frequencies to be measured and offer user selectable features, digital outputs and diagnostics. SAW devices are not affected by magnetic fields.

TorqSense RWT450 series transducers offer:

- Fixed voltage or current analog outputs (one for torque and the other for speed or power) for interfacing with analog instrumentation
- BIT Self-diagnostics for letting the manufacturer know that the transducer's torque, speed ratings and calibration due date have not been exceeded.
- Simple 'Sensor status' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy

Whereas, TorqSense RWT460 series transducers offer:

- Digital outputs, such as RS232, CANbus and USB, for interfacing with modern instrumentation and laptops
- Digital input for configuring transducer via PC
- 2 x user selectable voltage or current analog outputs (one for torque and the other for speed, power or peak torque) for interfacing with analog instrumentation
- Transducer configuration software to allow user to changes transducer variables
- BIT Self-diagnostics for letting users know data is trustworthy, that the transducer's torque, speed ratings and calibration due date have not been exceeded
- Simple 'Sensor status' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy
- Ability to connect up to 10 transducers using USB

TORQ VIEW Software

TorqView is an easy to use advanced torque monitoring software, available to assist data recording and instrumentation displays that interface with Windows based PCs.

Features include: 3 types of display, text files compatible with Matlab and Excel and Real time chart plotting. See TorqView datasheet for more details.

LabView VIs are available for users to design their own process control applications. DLLs are also available for users to write their own custom software.

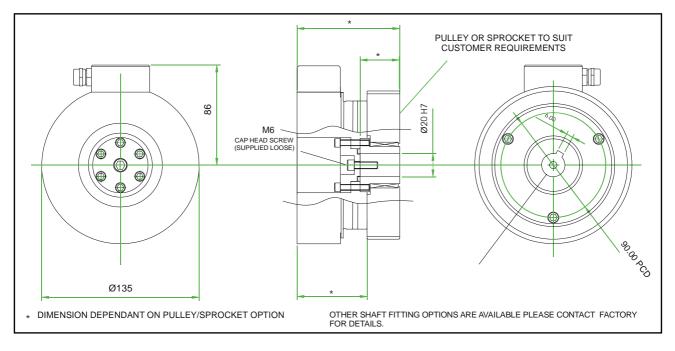
RWT450/460 Series Torque Transducers - Data Specification

Parameter	Condition				Dat	а				Units
RWT450/460 Torque n	neasurement sv	stem								
Measurement method			face Acoustic	Nave Reso	nators (inter	rrogated by a	an increme	ental electr	onic scanni	na method)
Torque range	(See Notes 1				From 50 –					Nm
	& 2 below)				[From 500 -					[lbf in]
Detetion and (angle)	f rotation mag		wat a ma		[110111 300 -	100,000				
Rotation speed/angle	of rotation meas	surement s	system		4					
Measurement method	Dulas suture	1			lagnetic pick			- 6		
Direct output signal			opto switch (alog or algi	tal processing.
Digital Processing	Processing					inalog and				_
Techniques	Mode 1 (Slow				3 Pulse/Rev I	Magnetic Spe	ed Sensor	-		Hz
	Frequency					1				
Rotational speed (max)	(See Not	e 3)	l		Со	nsult factory	_			RPM
Temperature	1						. .			
Measurement method			IR temp	erature sei		ing actual sh	aft tempe	rature		0
Temperature accuracy					±1					°C
Reference					20					°C
temperature, T _{RT}										0-
Operating range, ΔT_0					-10 to					0°C
Storage range, ΔT _s		ļ			-20 to					0°C
Temperature drift (FS)	Max				0.0	5				%FS/ºC
Specifications										
Combined non-linearity					±0.	5				%FS
and hysteresis										
Resolution					0.0					%FS
Repeatability					0.1					%FS
RWT450 Series Transd										
Accuracy	20°C, SM (See Note 4)		±0.5							%FS
3dB Bandwidth	(See Notes 5&6)				312 (default	ave. = 16)				Hz
RWT460 Series Transd	ucers ONLY									
Digital averaging	(See Note 5)	2	4	8	16	32	6	4	128	Hz
Accuracy	20°C, SM <i>(See Note 4)</i>	±0.7	±0.5	±0.5	±0.5	±0.5	±0	.5	±0.5	%FS
3dB Bandwidth	(See Note 6)	2500	1250	625	312	156	7	8	39	N
Analog output						•				
Output voltages		Option	s available: ±1	/ ±5 / ±10	0 / Unipolar	(RWT450 Se	ries defau	t setting is	±5Vdc)	Vdc
(Torque/Speed/Power)						ages are use			,	
Load impedance			, ,		1					KΩ
Output currents			O	otions avai	lable: 4-20m	nA / 0-20mA	/ 12±8mA			mA
(Torque/Speed/Power)						rents are use				
4-20mA Loop resistance			•		Should not e	xceed 400				Ω
Digital output (RWT46	0 Series Transd	ucers ONL	Y)							
Connections		CAN Bus			RS	5232			US	B
Configuration	CAN 2.0B, 1		e Identifiers	Data I		: None, Sto	o Bits: 1		USB 2.0 Ft	
Baud Rate(s)	1 Mbps, 500 K								12 M	
Output Rate (Note 7)		Kbps, 250 Kbps, 100 Kbps 115200 bps, 38400 bps, 9600 bps 12 Mbp Jp to 10 KHz Up to 1.1 KHz Single Transfer Bulk Transfer						Up to 500 Hz Up to 10 KHz		
Power supply	I									
Nominal voltage, Vs					12 to 32	(may)				V
Current consumption, I_s					230 (n					mA
Power consumption, W_s					230 (11	iak)				W
						<u> </u>				
Allowed residual ripple				(aba	500 vo nominal s	supply voltag	a)			mVp-p
of supply voltage, V _{ripple}	stibility	l		(abu			c)			
Electromagnetic compa										

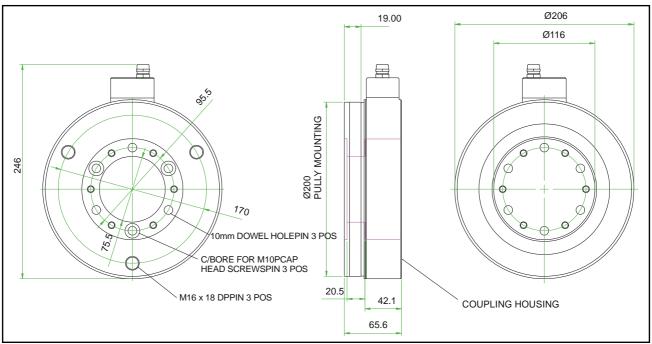
Note 1: Any torque/FSD is possible between ranges – please specify max rated torque.

Note 2: Max rated torque should not be exceeded.

Note 4: SM – Static Mode. Dynamic values will depend upon user application and has to be adjusted accordingly.

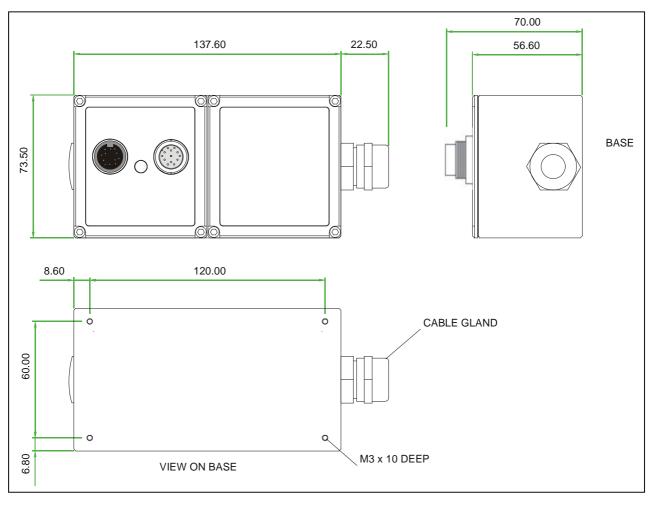

Note 5: Digital averaging can be configured by user to optimise accuracy/frequency response for specific user applications. Digital averaging default setting is N=16. For details see User Manual.

Note 6: >5Khz Sample Rate. Up to 10Khz sample rate possible, please consult factory. Digital averaging also affects the analog output, max analog output 3dB Bandwidth = 5Khz when digital average is 1.


Note 7: Output rate figures are calculated from the time taken to capture 10000 torque readings. Testing was conducted with each connection method configured at its maximum baud rate. The maximum output rate available for CAN and USB is dependent on the transducers setup. USB - USB is a host based bus architecture, because of this the output rate achievable will be affected by other bus traffic and host activity. USB has two transfer modes, Single Transfer which requests 1 reading at a time and Bulk Transfer which transfers readings in blocks of 50 Torque/Speed pairs. CAN Bus - to achieve a Torque reading output rate of 10KHz, the Speed reading output rate must be reduced to 100Hz.

Note 3: Please consult factory for applications requiring rotational speeds that exceed maximum figures given. Transducers fitted for IP65 will have running speeds considerably reduced, increased drag torque and accuracy can be affected.

Dimensions (50Nm to 100Nm)



Dimensions (5KNm)

Please consult factory for other sizes

RWT450/460 Series Electronics Module

RWT450/460 Series Torque Transducers - Standard Range

	RWT45 Ser		Option Code	Remarks
Torque, Speed, Power Outputs	RWT450	RWT460		
Torque only	450	460		
Torque & Speed (Low Resolution)	451			Specify RPM/FSD (3 pulses / rev)
Torque & Speed (High Resolution)	452			Not yet available (360 pulses / rev)
Torque & Power	453			Specify Power/FSD
Torque & Speed (Low Resolution)		4/4		User self selectable
or Power		461		(3 pulses / rev)
Torque & Speed (High Resolution) or Power		462		Not yet available (360 pulses / rev)
Standard features				
Voltage Output ±5v FSD (Fixed)	•		В	
Voltage Output $\pm 1v$ to $\pm 10v$ FSD and Unipolar (Variable)		•		User self selectable
RS232 Output		•		
Torque Averaging		•		
Torque Peak		•		
Self Diagnostics		•		
Internal Temperature Reading		•		
Deep grooved shielded bearings with oil lubrication	•	•		
Ingress Protection (IP) 54	•	•		
Link Cable (1.5m)	•	•		From sensor head to electronics module
Optional features				
Voltage Output ±1v FSD (Fixed)	\$		A	In place of Option B
Voltage Output ±10v FSD (Fixed)	\$		С	In place of Option B
Customer Specified Voltage Output (Fixed)	\$		U	User to specify
Current Output 0-20mA (Fixed)	\$		D	In place of Options A,B & C
Current Output 4-20mA (Fixed)	\$		E	In place of Options A,B & C
Current Output 12mA±8mA (Fixed	\$		V	In place of Options A, B & C
Current Output 0-20mA, 4-20mA & 12mA±8mA (Variable)		\$	F	<i>Current output is user</i> <i>selectable and in place of</i> <i>Voltage output. However</i> <i>user can reselect a Voltage</i> <i>output, if required. (Note 8)</i>
USB2.0 full speed 12 Mbps Digital output		\$	G	
CANbus output		\$	Н	In place of RS232
High Speed Bearings	\$	\$	J	
Sealed Bearings	\$	\$	S	Consult factory for maximum
Ingress Protection (IP) 65 - for sensor and electronics (See Note 9 below)	\$	\$	L	speed allowances
Ingress Protection (IP) 65 connectors in lead b/w head & electronics	\$	\$	М	
Cavity 'D' connectors in lead b/w head & electronics	\$	\$	Ν	
Link Cable (>1.5m)	\$	\$	R	Consult factory for length

Note 8: 2 x analog channels available. Default settings are Channel 1 (voltage/current) – torque.

Channel 2 (voltage/current) – speed or power, if ordered. Note 9: Transducers fitted for IP65 will have running speeds considerably reduced, increased drag torque and accuracy can be affected.

		50/460 ries	Option Code	Remarks/Purpose
Connectors & Leads	RWT450	RWT460		
Analog Connector 12 Pin Lumberg (female)	\$	\$	ACC 1	For user to self wire
Digital Connector 12 Pin Lumberg (male)		\$	ACC 2	For user to self wire
Analog Lead (Length 2.5m) 12 Pin Lumberg (female) to 15 way 'D' type connector (female)	\$	\$	ACC 3	For connecting RWT to user's system via 15 pin 'D' connector
Digital Lead (Length 2.5m) 12 Pin Lumberg (male) to 15 way 'D' type connector (male)		\$	ACC 4	For connecting RWT to user's system via 15 pin 'D' connector
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to RS232 and Power Connectors		\$	ACC 5	For connecting RWT to PC via RS232 [Also needs Digital Lead (ACC4) to connect to RWT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to RS232, USB and Power Connectors		\$	ACC 6	For connecting RWT to PC via USB (Option G) or RS232 [Also needs Digital Lead (ACC4) to connect to RWT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to CANbus and Power Connectors		\$	ACC 8	For connecting RWT to PC via CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to RWT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to CANbus, USB and Power Connectors		\$	ACC 9	For connecting RWT to PC via USB (Option G) or CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to RWT]

MT150/160 S nnoctor and Load Ontions - --:

RWT450/460 Series Torque Transducers – Additional related products

	Code	Remarks/Purpose
Transducer Display ETD	ETD	Display readout
AC Mains Adapter Power Supply	PSU 1	For providing 12-32Vdc
Transducer Signal Breakout Unit	SBU 2	
TorqView	ΤV	Torque Monitoring Software

Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice. © Sensor Technology Ltd 2013 RWT3437R (Rev3) When you order a Torque Transducer please note that any torque/FSD is possible between ranges – please specify rated torque and options using the following format:

For example: <i>RWT</i>	451 - 100Nm -	CL	A 'basic' transducer with torque and speed outputs, rated and calibrated to 100Nm FSD, ±10v and IP65 protection.
Your transducer requirement: RWT			
Max speed (if applicable)		RPM	I
Connector & Lead options		(if applicable	e) See over
Additional related products		(if applicable	e) See over

Glossary of terms and definitions used in this datasheet

- **Surface Acoustic Wave (SAW)** An acoustic wave travelling along the surface of a material having some elasticity, with amplitude that typically decays exponentially with the depth of the substrate.
- Strain dependent SAW resonators A type of elastic SAW device, which changes its resonant properties when it is subjected to axial strain/compression. TorqSense uses this principle, which is protected by a number of patents.
- Incremental Electronic Scan (IES) The most successful and precise method for interrogating strain dependent SAW resonators. The IES interrogation method uses a processor controlled frequency synthesiser to excite the SAW resonators over a defined range of frequencies and measure the reflected signal. TorgSense uses this patented method.
- **Resolution of the IES method** The minimum measurable number corresponding to the stress/strain sensitive resonance point of the SAW resonator. The value is limited by following the factors:
 - frequency resolution of the synthesiser, which is 1000 times greater then overall resolution of the system.
 - relationship between frequency response and resolution. Increments of the resolution will proportionally
 decrease the system's frequency response. TorqSense systems are optimised for the best performance
 that suits most applications. However, on the RWT460 series models customers do have the capability
 to adjust the system performance.
- *Frequency response of the IES method* The measure of the TorqSense system's response at the output to a signal of varying frequency at its input. The frequency response is typically characterised by the magnitude of the system's response, measured in dB. There are two ways of characterising the system's frequency response:
 - 0.1dB frequency range, where the output magnitude of the signal is different to the input magnitude of the signal by not more then 0.1dB (practically absolutely identical).
 - 3dB frequency range, where the output magnitude of the signal is 0.707 of the input signal. This is a common standard for most applications, unless it specifically says otherwise. This standard is also used to characterise the TorgSense system's frequency response.
- **Accuracy** The degree of conformity of a measured or calculated quantity, which will show the same or similar results. Accuracy of the overall TorqSense system is limited by the combined error of several factors such as linearity, hysteresis, temperature drifts and other parameters affecting measurements. If errors in the system are known or can be estimated, an overall error or uncertainty of measurement can be calculated.
- **Digital averaging** The application of algorithms to reduce white noise. In any electronic system, electronic white noise is mixed with the signal and this noise usually limits the accuracy. To reduce the influence of white noise and increase the accuracy of the system different averaging algorithms can be applied. In the TorqSense system a flying digital averaging technique is applied to reduce the white noise commensurate with the level of accuracy required. However, as any averaging algorithm works as a low pass filter, the more averaging that is applied the lower the frequency response. Therefore, each Torqsense system should be optimised to the customer's requirements by choosing the right combination of accuracy/frequency response. Please see relevant part of the Datasheet and User Manual.

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

ORT 230/240 series Torque Transducer

Apollo Park, Ironstone Lane, Wroxton, Banbury, Oxon, OX15 6AY, UK Tel: +44 (0)1869 238400 Fax: +44 (0)1869 238401 Email: info@sensors.co.uk Web: www.sensors.co.uk

Digital ORT 230/240 series Torque Transducer

The ORT 230/240 Transducer offers an ideal means for precise dynamic measurement of rotary and static torque less than 100Nm and for bandwidths of up to 50Khz.

The new TorqSense ORT 230/240 torque sensors replace the E200 ORT series and feature all new electronics that have produced significant performance gains in resolution, frequency response, reduced sensor current consumption and faster digital data throughput.

Benefits

- Low inertia High Speed capability because electronics are not fixed onto shaft
- Non contact/brushless measurement
- High Bandwidth
- 200% safe mechanical overload
- Excellent noise immunity
- Separate digital electronics
- Operates both statically and dynamically - clockwise/anti-clockwise
- Any full scale torque can be specified within standard range: 10mNm through to 100Nm
- Lifetime warranty

Technology

An extensively developed measurement principle is used, in which the intensity of light beams is measured by means of photovoltaic detectors, and the electrical output is used to provide precise indication of the applied torque transmitted by the shaft.

The use of this technique results in a transducer being able to sense torque bi-directionally, have a fast mechanical and electrical response, low inertia, and complete freedom from brushes or complex electronics. The absence of brush gear allows high-speed operation with a continuous rating of up to 30,000 RPM standard. Further increases in RPM are available as an option depending upon shaft size.

The torque shaft is of low compliance $1/2^{\circ}$ maximum torsion deflection on the smaller transducers, and $1/4^{\circ}$ maximum on the larger transducers, at full-scale deflection. The lamps providing the light source are selected to ensure long life and high stability with the light intensity automatically controlled within the transducer body by a monitor cell.

TorqSense ORT 230 series transducers offer:

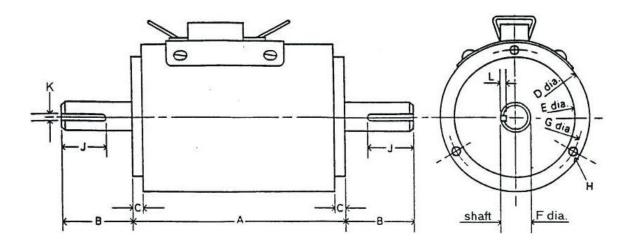
- Fixed voltage or current analog outputs (one for torque and the other for speed or power) for interfacing with analog instrumentation
- BIT Self-diagnostics for letting the manufacturer know that the transducer's torque, speed ratings and calibration due date have not been exceeded.
- Simple 'Sensor status' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy

Whereas, TorqSense ORT 240 series transducers offer:

- Digital outputs, such as RS232, CANbus and USB, for interfacing with modern instrumentation and laptops
- Digital input for configuring transducer via PC
- 2 x user selectable voltage or current analog outputs (one for torque and the other for speed, power or peak torque) for interfacing with analog instrumentation
- Transducer configuration software to allow user to changes transducer variables
- BIT Self-diagnostics for letting users know data is trustworthy, that the transducer's torque, speed ratings and calibration due date have not been exceeded
- Simple 'Sensor status' output pin
- Sensors to monitor shaft temperature for better compensation and accuracy
- Ability to connect up to 10 transducers using USB

TORQVIEW. Software

TorqView is an easy to use advanced torque monitoring software, available to assist data recording and instrumentation displays that interface with Windows based PCs. Features include: 3 types of display, text files compatible with Matlab and Excel and Real time chart plotting.

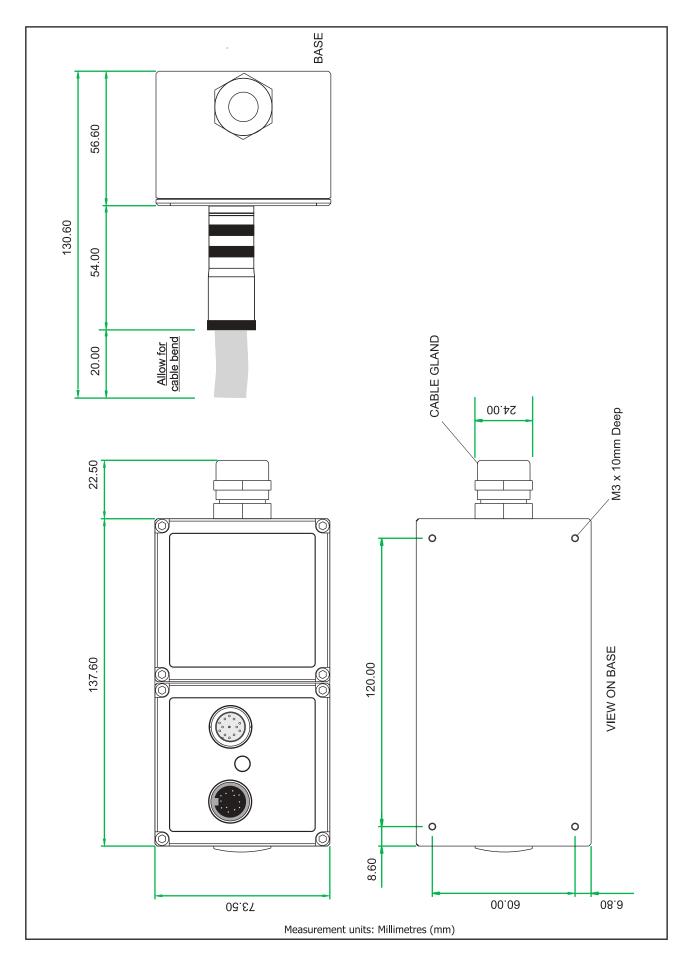

See TorqView datasheet TSE2099R for more details.

LabView VIs are available for users to design their own process control applications. DLLs are also available for users to write their own custom software.

Standard

Cable length	1.5metres to interface box	Safe mechanical overload	200% of rating
Accuracy	ТВС	Hysteresis	Better than 0.1%
Bandwidth	50Khz	Bearings	Deep grooved shielded bearings with oil lubrication
Temperature Range	-10°C to +50°C	Temperature coefficient	Less than 0.05% per °C

Mechanical Parameters


Model	Dimensions (mm)											
	А	В	С	D	Е	F	G	Н	Depth	J	Κ	L
ORT230/240 -C,-D,-E	75	25.4	1.5	62	50	6.35	56	M3	5	N/A	Plain	N/A
ORT230/240 -F	75	25.4	1.5	62	50	6.35	56	M3	5	19.05	Flat	0.183
ORT230/240 -G	105	38	1.5	62	50	12.7	56	M3	6.35	30	3.96	1.98
ORT230/240 -H	130	60	1.5	62	50	20	56	M3	11	53	6	3.5

Standard Specifications

	Torque Range *		Maximum Speed	Shaft Type
Model	Minimum	Maximum	(RPM)	
ORT230/240-C	0 to 10mNm (0 to 1ozf.in)	0 to 20mNm (0 to 3ozf.in)	30000	Plain
ORT230/240-D	0 to 25mNm (0 to 3.5ozf.in)	0 to 100mNm (0 to 10ozf.in)	30000	Plain
ORT230/240-E	0 to 150mNm (0 to 15ozf.in)	0 to 750mNm (0 to 100ozf.in)	30000	Plain
ORT230/240-F	0 to 800mNm (0 to 7lbf.in)	0 to 1Nm (0 to 10lbf.in)	30000	Flat
ORT230/240-G	0 to 1.5Nm (0 to 15lbf.in)	0 to 20Nm (0 to 200lbf.in)	20000	Keyways
ORT230/240-H	0 to 25Nm (0 to 250lbf.in)	0 to 100Nm (0 to 1000lbf.in)	15000	Keyways

* Calibration is possible in any equivalent SI, FPS or MKS units, e.g. gf.cm, lbf.ft, cNm Transducers may be specified to any torque range between the maximum and minimum for each model. For example ORT241-C 15mNm, or ORT231-G 10Nm

ORT 230/240 Series Electronics Module

ORT 230/240 Series Torque Transducers - Data Specification

Parameter	Condition	Condition Data						Units		
Rotation speed/angle of r	otation measur	ement syste	m							
Measurement method				Opto swi	tch through :	slotted disc				
Direct output signal	Pulse output o	lirect from or	to switch (T			put is independe	nt of any ana	log or dig	ital pro	cessing.
Digital Processing	Processing					nalog and digi			· · · ·	
Techniques	Mode 1 (Slov			•			•			
Processing modes run	Frequency					1				Hz
simultaneously and can be			0	RPM			1			
applied to either analog	Mada 2 (East	Mothod)	-	00 RPM			RPM			
channel or accessed	Mode 2 (Fas Period C									Hz
individually via a digital	renou c	Journe	> 2000 RPM RPM x (1 / ((RPM - 1) / 2000) + 1))							
connection.								- ,,		
Rotational speed (max)	(See Note 1)	30,000		20,000			15,000			RPM
Temperature										
Measurement method			IR temper	ature sensor	monitoring	actual shaft tem	perature			
Temperature accuracy					±1					°C
Reference temperature, T _{RT}					20					٥C
Operating range, ΔT_0					-10 to +					°C
Storage range, ΔT_s					-20 to +	+70				٥C
Temperature drift (FS)	Max				0.05					%FS/%
Specifications										
Combined non-linearity and					ТВС					%FS
hysteresis					IBC					705
Resolution			0.02						%FS	
Repeatability					0.1					%FS
ORT 230 Series Transduce										
Accuracy	20°C, SM <i>(See</i> Note 2)		TBC					%FS		
3dB Bandwidth	(See Notes 3&4)				TBC					Hz
ORT 240 Series Transduce	ers ONLY									
Digital averaging	(See Note 3)	2	4	8	16	32	64	12	8	N
Accuracy	20⁰C, SM	TBC	TBC	TBC	TBC	ТВС	TBC	ТВ	ic.	%FS
	(See Note 2)	-	-	-					_	701 3
3dB Bandwidth	(See Note 4)	TBC	TBC	TBC	TBC	TBC	TBC	TB	,C	Hz
Analog output										
Output voltages		Option				ORT230 Series d		is ±5Vdc))	Vdc
(Torque/Speed/Power)			(OF	T240 Series		ges are user sele	ectable)			
Load impedance					Maximu					KΩ
Output currents						20 / 0-20 / 12±8				mA
(Torque/Speed/Power)			(OF			ents are user sele	ectable)			
4-20mA Loop resistance				S	hould not ex	ceed 400				Ω
Digital output (ORT240 Se	eries Transduce									
Connections		CAN Bus			RS23			US		
Configuration	CAN 2.0B, 11	bit Message 1	dentifiers	Data Bit	s: 8, Parity: I	None, Stop Bits:	1 (USB 2.0 F	ull-Spe	ed
Baud Rate(s)	1 Mbps, 500 Kb	os, 250 Kbps,	100 Kbps	11520	0 bps, 38400	0 bps, 9600 bps		12 M	1bps	
Output Rate (Note 5)	U	p to 10 KHz	to 10 KHz Lip to 1.1 KHz Single Transfer Up				:o 500 Hz :o 10 KHz			
Power supply								ansiel	<u> </u>	
Nominal voltage, V _s					12 to 32 ((max)				V
Current consumption, Is		12 to 32 (max) 230 (max) @ 12 VDC						mA		
Power consumption, W _s								W		
Allowed residual ripple of					<u> </u>					mVp-j
	(above nominal supply voltage)					mvh-t				
	L	I		(ປີບົບຈິ						l
supply voltage, V _{ripple}	ility .									
supply voltage, v _{ripple} Electromagnetic compatib EMC compatibility	oility				EN 61326	12006				

SM – Static Mode. Dynamic values will depend upon user application and has to be adjusted accordingly. Digital averaging can be configured by user to optimise accuracy/frequency response for specific user applications. Digital averaging default Note 3: setting is N=16. For details see User Manual.

Note 4: >5Khz Sample Rate. Up to 10Khz sample rate possible, please consult factory. Digital averaging also affects the analog output, max analog output 3dB Bandwidth = 5Khz when digital average is 1.

Output rate figures are calculated from the time taken to capture 10000 torque readings. Testing was conducted with each connection method configured at its maximum baud rate. The maximum output rate available for CAN and USB is dependent on the transducers setup. USB - USB is a Note 5: host based bus architecture, because of this the output rate achievable will be affected by other bus traffic and host activity. USB has two transfer modes, Single Transfer which requests 1 reading at a time and Bulk Transfer which transfers readings in blocks of 50 Torque/Speed pairs. CAN Bus - to achieve a Torque reading output rate of 10KHz, the Speed reading output rate must be reduced to 100Hz.

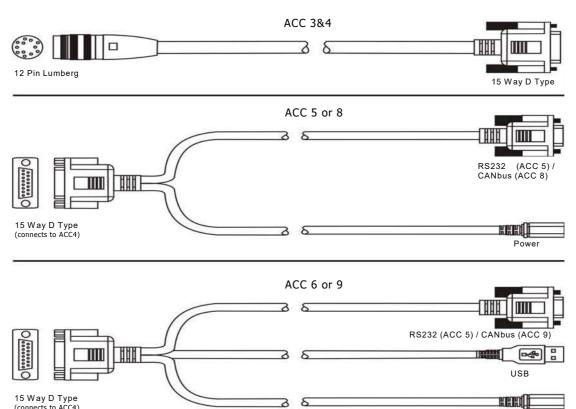
> Data parameters measured at +20°C Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

	ORT 23	♦ – Optiona 30/240	Option	Remarks
		ries	Code	
Torque, Speed, Power Outputs	ORT 230	ORT 240		
Torque only	230	240		
Torque & Speed (60 pulses/rev)	231			User to specify RPM/FSD when ordering
Torque & Power (60 pulses/rev)	233			User to specify Power/FSD when ordering
Torque & Speed <i>(60 pulses/rev)</i> or Power		241		Outputs are user selectable
Standard features				
Voltage output ±5v FSD (Fixed)	•		В	
Voltage outputs from $\pm 1v$ to $\pm 10v$ FSD	•			
and unipolar (Variable)		•		Output is user selectable
RS232 output		•		
Torque Averaging & Torque Peak		•		
Self Diagnostics	•	•		
Internal temperature measurement	•	•		Value available on ORT240 series only
Deep grooved shielded bearings with oil lubrication	•	•		
Ingress Protection (IP) 54	•	•		
Link Cable (1.5m)	•	•		From sensor head to electronics module
Optional features				
Keyed Shaft Ends	•	•	K	1Nm flats, below 1Nm plain
Plain Shaft Ends	\$	\$	Ρ	Shaft length may be longer than keyed end shafts – consult factory for length. All sensors below 1Nm will be plain.
Splined Shaft Ends	\$	\$	Т	Consult factory for details
Voltage output ±1v FSD (Fixed)	\$	•	A	In place of Option B
Voltage output ±10v FSD (Fixed)			C	In place of Option B
Customer Specified Voltage Output	~		C	In place of Option B. User
(Fixed)	\$		U	to specify range/scale when ordering
Current output 0-20mA (Fixed)	\$		D	In place of Voltage output options
Current output 4-20mA (Fixed)	\$		E	In place of Voltage output options
Current output 12±8mA (Fixed)	\$		۷	In place of Voltage output options
Current output 0-20mA, 4-20mA & 12±8mA (Variable)		\$	F	<i>Current output is user</i> <i>selectable and in place of</i> <i>Voltage output. However</i> <i>user can reselect a Voltage</i> <i>output, if required. (Note 6)</i>
USB2.0 full speed 12 Mbps Digital output		\$	G	
CANbus output		\$	H	In place of RS232
High Speed Bearings (See Note 7 below)	\$	↓	j	
Sealed Bearings	♦	↓	S	Consult factory for maximum
Ingress Protection (IP) 65 –for sensor	* *	↓	L	speed allowance
and electronics (See Note 8 below)			R	

ORT 230/240 Series Torque Transducers - Standard Range – Standard feature 📣 – Ontional feature

Note 6: 2 x analog channels available. Default settings are Channel 1 (voltage/current) – torque. Channel 2 (voltage/current) – speed or power, if ordered.

Note 7: At very high speeds, for better balance the factory recommend plain or splined shafts. Note 8: Transducers fitted for IP65 will have running speeds considerably reduced, increased drag torque and accuracy can be affected.


Data parameters measured at +20°C

		30/240 ries	Option Code	Remarks/Purpose
Connectors & Leads	ORT 230	ORT 240		
Analog Connector 12 Pin Lumberg (female)	\$	\$	ACC 1	For user to self wire
Digital Connector 12 Pin Lumberg (male)		\$	ACC 2	For user to self wire
Analog Lead (Length 2.5m) 12 Pin Lumberg (female) to 15 way 'D' type connector (female)	\$	\$	ACC 3	For connecting ORT to user's system via 15 pin 'D' connecto
Digital Lead (Length 2.5m) <i>12 Pin Lumberg (male) to 15 way 'D'</i> <i>type connector (male)</i>		\$	ACC 4	For connecting ORT to user's system via 15 pin 'D' connecto
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to RS232 and Power Connectors		\$	ACC 5	For connecting ORT to PC via RS232 [Also needs Digital Lead (ACC4) to connect to ORT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to RS232, USB and Power Connectors		\$	ACC 6	For connecting ORT to PC via USB (Option G) or RS232 [Also needs Digital Lead (ACC4) to connect to ORT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to CANbus and Power Connectors		\$	ACC 8	For connecting ORT to PC via CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to ORT]
Digital Lead Adapter (Length 1m) 15 Way 'D' type (female) to CANbus, USB and Power Connectors		\$	ACC 9	For connecting ORT to PC via USB (Option G) or CANbus (Option H) [Also needs Digital Lead (ACC4) to connect to ORT]

ORT 230/240 Series Torque Transducers - Connector and Lead Ontions

ORT 230/240 Series Torque Transducers – Additional related products

	Code	Remarks/Purpose
Transducer Display ETD	ETD	Display readout
AC Mains Adapter Power Supply	PSU 1	For providing 12-32Vdc
Transducer Signal Breakout Unit	SBU 2	
TorqView	TV	Torque Monitoring Software

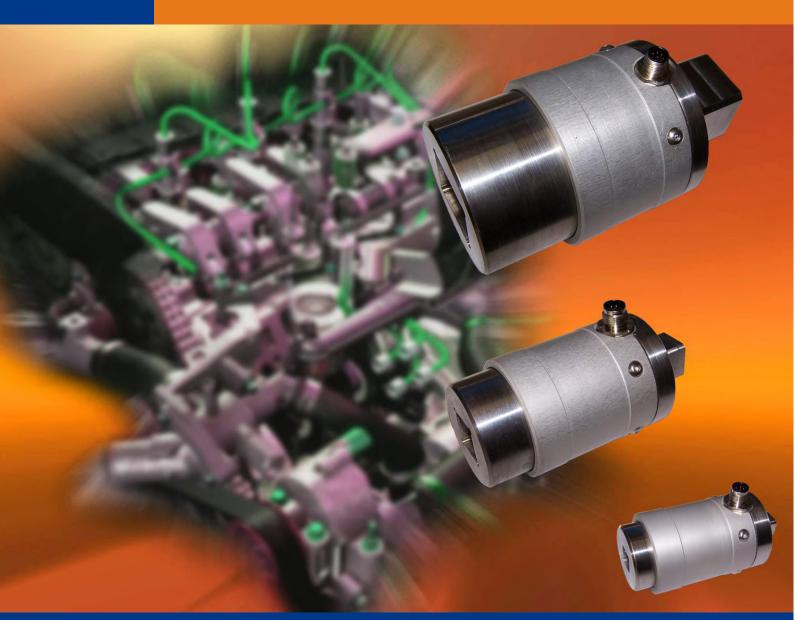
15 Way D Type (connects to ACC4)

Data parameters measured at +20°C

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

8 3

Power


When you order a Torque Transducer please note that any torque/FSD is possible between ranges – please specify rated torque and options using the following format:

For example: <i>ORT</i>	231 - 15Nm -	K-CL	A 'basic' transducer with torque and speed outputs, rated and calibrated to 15Nm FSD with keyed ends, ±10v and IP65 protection.
Your transducer requirement: ORT			
Max speed (if applicable)		RPM	
Connector & Lead options		(if applicable	e) See over
Additional related products		(if applicable	e) See over

Glossary of terms and definitions used in this datasheet

- **Accuracy** The degree of conformity of a measured or calculated quantity, which will show the same or similar results. Accuracy of the overall TorqSense system is limited by the combined error of several factors such as linearity, hysteresis, temperature drifts and other parameters affecting measurements. If errors in the system are known or can be estimated, an overall error or uncertainty of measurement can be calculated.
- **Digital averaging** The application of algorithms to reduce white noise. In any electronic system, electronic white noise is mixed with the signal and this noise usually limits the accuracy. To reduce the influence of white noise and increase the accuracy of the system different averaging algorithms can be applied. In the TorqSense system a flying digital averaging technique is applied to reduce the white noise commensurate with the level of accuracy required. However, as any averaging algorithm works as a low pass filter, the more averaging that is applied the lower the frequency response. Therefore, each Torqsense system should be optimised to the customer's requirements by choosing the right combination of accuracy/frequency response. Please see relevant part of the Datasheet and User Manual.

SIT 105/110/120 Series Torque Transducer 50Nm to 5000Nm

Apollo Park, Ironstone Lane, Wroxton, Banbury, Oxon, OX15 6AY, UK Tel: +44 (0)1869 238400 Fax: +44 (0)1869 238401 Email: info@sensors.co.uk Web: www.sensors.co.uk

SIT 105/110/120 Strain Gauge In-Line Torque Transducer

The SIT 105/110/120 strain gauge reaction transducers are designed for operation in any industrial environment.

Models are available in sizes ranging from 50Nm to 5000Nm, offering outputs from mV/V outputs, to ratiometric voltage outputs, to digital data connection via RS232 or USB.

An option of a bench mount housing is available for torque wrench test and calibration.

Technology

The SIT 105/110/120 torque transducers use modern wire foil strain gauge technology with the latest high performance stainless steel shafts

Software

TorqView is an easy to use advanced torque monitoring software, available to assist data recording and instrumentation displays that interface with Windows based PCs. See TorqView datasheet.

Features: 3 types of display. Text files compatible with Matlab and Excel. Real time chart plotting.

LabView VIs are available for users to design their own process control applications.

DLLs are also available for users to write their own custom software.

SIT 105 transducers offers:

Calibrated 1mV/V output

SIT 110 transducers offers:

 Scaled ratiometric voltage output, 2.5V zero, 4.5V CW FSD 0.5V ACW FSD

SIT 120 Transducers offers:

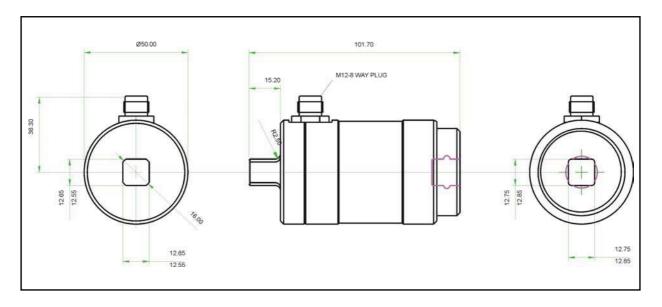
- Ratiometric voltage output as above
- RS232 output for connection to PC

SIT 120 Extension Module also offers:

- USB digital output
- User scalable voltage or current outputs, ±1V to ± 10V, 4-20mA bipolar and unipolar

SIT 105/110/120 Series Strain Gauge Torque Transducers - Data Specification

Parameter	Condition		Data			
CIT405 /440 /400 0: ··						
SIT105/110/120 Statio	c torque measuren		1 1 1 11 11			
Measurement method		DC Strain Ga		ation and temperature c		••
Torque range	Note 1			1000, 2000, 5000, 1000		Nm
		1/2		1000, 2000, 5000, 1000		lbf.ft
Drive size		1/2 (up to 200Nm)	3/4 (up to 500Nm)	1 (up to 2000Nm)	1 1/2 (Above 2000Nm)	Inch
Temperature						
Measurement method		Static torqu	e measurement system	n based on Strain Gauge	e technology	
Temperature accuracy			,,,,,,,, .	±0.5	31	Oo
Ref. Temp., T _{RT}				20		0 ⁰ C
Operating range, ΔT_0			-	10 to 50		°C
Storage range, ΔT_s				20 to 60		°Č
Temperature drift (FS)	Uncompensated			sult Factory		%FS/ºC
	Compensated			sult Factory		%FS/°C
SIT105/110/120	2 on ponourou					, 51 0, 0
Linearity				0.05		%FS
Hysteresis				0.05		%FS
Resolution				0.005		%FS
Frequency response		Up to 5KHz (digital output), Up to 8KHz (Analog output)				Hz
Accuracy	20°C, SM	±0.6 @ 5KHz				%FS
	(See Note 2)	±0.1 @ 310KHz				/0.0
			±0.06 @ 155KHz			
			±0.025 @ 40Hz			
Averaging	(See Note 3)	From 1 to 128		N		
Analog output						
Output voltage			SIT1	05 = mV/V		Vdc
		S	SIT110 = 0.5v (ACW FS	S) – 2.5v (zero) – 4.5v (CWFS)	
				-20mA Output available		
				le (OPTN-X))		
Load impedance			5k			
Digital output (SIT120	Series Transducer	s ONLY)				
Output type		RS-232	2 (standard), USB (via	SIT120 Extension Modu	le (OPTN-X)	
Sampling rate	See User		4.5Ksps (mi	in) –5.5Ksps (max)		ksps
	Guide for details					
Power supply	-					
Nominal voltage, V _s			10 to 18			
Current consumption, Is			8	0 (max)		mA
Power consumption, Ws		1.2 (max)				W
Allowed residual ripple				20		mVp-p
of excitation voltage, V _{rip}						
Electromagnetic compa	atibility					
EMC compatibility			EN 55011 8	& EN 61326-1 (JG)		

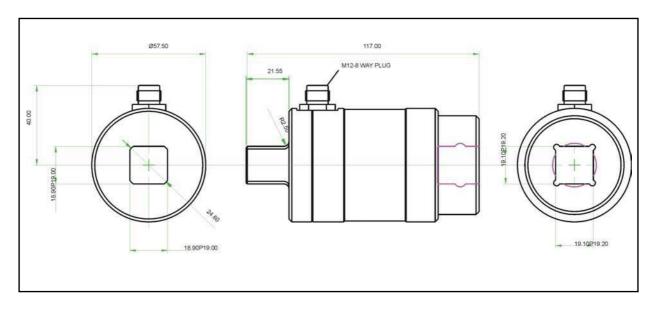

. Note 1. Other sizes are possible. Consult factory for details. Note 2. SM – Static Mode. Dynamic values will depend upon user application and has to be adjusted accordingly.

 Note 3. Digital averaging can be configured by user to optimise accuracy/frequency response for specific user applications.

 Digital averaging default setting is N=32. For details see User Manual.

SIT 105/110/120 Series Strain Gauge Torque Transducers

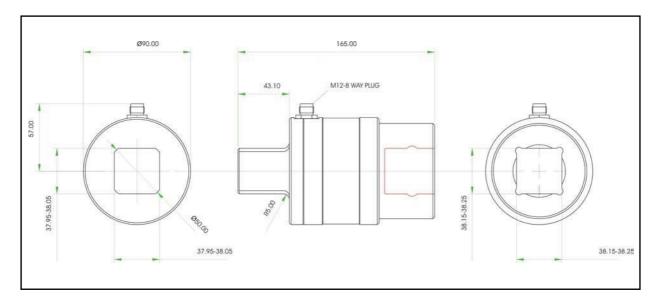
Dimensions (50 - 200Nm)


Parameter	Data			Units
Mechanical Properties				
Torque (Max)	50	100	200	Nm
Shaft Code	CA	СВ	CC	
Drive Size	1/2			Inch
Max measurable load limit		120 (of rated torque)		
Static safe load breaking	200 (of rated torque)			%
Transducer weight, approx	TBC			Kg

Sensor Technology Ltd reserves the right to change specification and dimensions without notice.

.

SIT 105/110/120 Series Strain Gauge Torque Transducers


Dimensions (201 – 500Nm)

Parameter	Data	Units
Mechanical Properties		
Torque (Max)	500	Nm
Shaft Code	DA	
Drive Size	3/4	Inch
Max measurable load limit	120 (of rated torque)	%
Static safe load breaking	200 (of rated torque)	%
Transducer weight, approx	1.3	Кд

SIT 105/110/120 Series Strain Gauge Torque Transducers

Dimensions (1001 – 5000Nm)

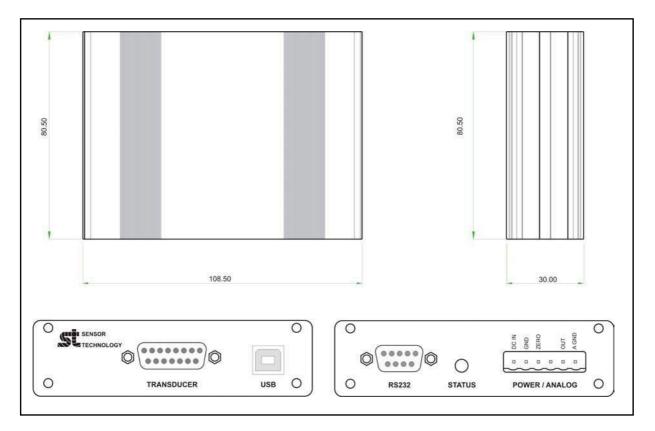
Parameter	D	ata	Units
Mechanical Properties			
Torque (Max)	2000	5000	Nm
Shaft Code	FA	FB	
Drive Size	1	Inch	
Max measurable load limit	120 (of ra	%	
Static safe load breaking	200 (of rated torque)		%
Transducer weight, approx	4.5		Kg

SIT 105/110/120 Series Strain Gauge Torque Transducers - Standard Range

	SIT 105	SIT 110	SIT 120	Option Code	Remarks
Standard features					
M / F Square ends	•	•	•		
mV / V Output	•	•	•		
Ratiometric voltage output 2.5V ± 2.5V FSD		•	•		
Internal temperature reading / correction		•	•		
RS232			•		
Optional Features					
Round Shaft ends (with keyways)	\$	\$	\$	К	
Plain shaft ends (no keyways)	\$	\$	\$	Р	
Bench mount housing	\$	\$	\$	Y	
SIT120 extension module			\$	X	USB output ±1V to ±10V output. 0-20 mA or 4-20mA output. User adjustable (includes lead to transducer)

SIT 105/110/120 Series Strain Gauge Torque Transducers - Connector and Lead Options

	SIT 105	SIT 110	SIT 120	Remarks
Leads				
ACC – 11	\$	\$	\$	Open ended for user to self wire
ACC – 12	\$	\$	\$	With 15 way 'D' connector for easier system integration


SIT 105/110/120 Series Strain Gauge Torque Transducers – Additional related products

	Code	Remarks/Purpose
Transducer Display ETD	ETD	Display readout
AC Mains Adapter Power Supply	PSU 1	For providing 12Vdc
Transducer Signal Breakout Unit	SBU 1	
TorqView2	TV2	Torque Monitoring Software

Glossary of terms and definitions used in this datasheet

- **Accuracy** The degree of conformity of a measured or calculated quantity, which will show the same or similar results. Accuracy of the overall TorqSense system is limited by the combined error of several factors such as linearity, hysteresis, temperature drifts and other parameters affecting measurements. If errors in the system are known or can be estimated, an overall error or uncertainty of measurement can be calculated.
- **Digital averaging** The application of algorithms to reduce white noise. In any electronic system, electronic white noise is mixed with the signal and this noise usually limits the accuracy. To reduce the influence of white noise and increase the accuracy of the system different averaging algorithms can be applied. In the TorqSense system a flying digital averaging technique is applied to reduce the white noise commensurate with the level of accuracy required. However, as any averaging algorithm works as a low pass filter, the more averaging that is applied the lower the frequency response. Therefore, each Torqsense system should be optimised to the customer's requirements by choosing the right combination of accuracy/frequency response. Please see relevant part of the Datasheet and User Manual.

SIT 120 Mulit Function Interface box

Features

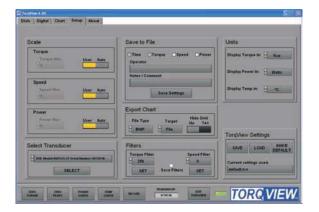
The SIT Multi Function Interface Box is used as an optional accessory to the SIT 120 and takes the 2.5V zero \pm 1.5V analog Voltage from the transducer head and provides additional user configurable analog outputs via Transducer Control software (provided).

Power supply	Data	Unit
Voltage	9 – 18	VDC
Ripple	< 50	mV
Current	TBC	mA
Physical		
Enclosure	Height 30 x Width 108.5 x Length 80.5	mm
Temperature Range	-10 to +50	0°
Temperature Stability	TBC	%/°C
Digital		
RS232	115	kbps
RS232 Sampling Rate	4200	Samples / Sec
USB	USB 2.0 full speed (12Mbps)	Mbps
USB Sampling Rate	Up to 6000	Samples / Sec
Analog Output		
FSD Voltage Output	User configurable	
13D Voltage Output	± 10	VDC
	± 5	120
	± 3 ± 1	
Min Load Impedance	1	KΩ
Current Output	User configurable	
	0-20	mA
	4-20	
Max Loop resistance	500	Ω
Electromagnetic Compatibility		
EMC Compatibility	EN 61326:2006	

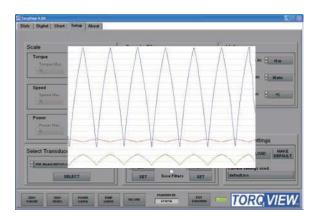
Advanced Torque Monitoring PC Interface Software

Apollo Park, Ironstone Lane, Wroxton, Banbury, Oxon, OX15 6AY, UK Tel: +44 (0)1869 238400 Fax: +44 (0)1869 238401 Email: info@sensors.co.uk Web: www.sensors.co.uk

Advanced Torque Monitoring PC Interface Software


TORCIVIEW is an easy to use advanced torque monitoring software available to operate in conjunction with the RWT420 and RWT440 Series Transducers to provide a flexible display, real time plotting and data recording facility.

TORCIVIEW has been written using National Instruments LabVIEW, and as it is a self running executable file so LabVIEW is not required to run this software.



Hardware requirements (Recommended)

Sensor Technology recommends a PC running Windows XP, Vista or 7 with a minimum of 512 MB of RAM; a minimum screen resolution of 1024 x 768 pixels; a Pentium IIII or equivalent processor; and a minimum of 600MB free disk space

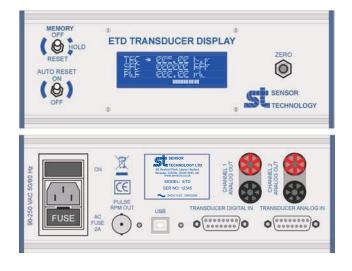
Benefits

- Simple installation using serial port or USB.
- Ease of operation (user friendly, a variety of user interface settings such as scales, units, etc.)
- 3 types of display: dials, digital bars and chart graph.
- Wide choice of displayed units (SI, FPS and MKS)
- Displays torque, RPM, power and temperature. Output a text file compatable with Matlab, Excel.
- LabView VIs available for users to design their own Interfaces
- DLLs available for users to write their own custom software process control applications.
- Data recording facility.
- User configurable settings

Transducer Display ETD

Introduction

The Transducer Display ETD is a readout suitable for all RWT and SIT transducers. Although it is primarily used to display torque and peak torque, it can also display speed* and power*, provide access to the analog outputs from the transducer and connect the transducer to a PC for use with TorqView and the Transducer Control Program.


Benefits

- Displays torque, peak torque, speed* or power* in the units specified within the transducer.
- Automatically detects and displays the model, range, serial no. and calibration due date of the transducer.
- Provides auto reset of peak torque values.
- Provides power to the transducer in place of the standard power supply unit.
- Provides access to analog torque outputs and pulse speed* output.
- Provides USB output if used with RWT420/440 series with USB option fitted.
- Displays warnings and high temperature if appropriate.
 - * Provided RWT transducer has speed option fitted and enabled

Technical Data

Display	LCD 20 x 4 STN BLUE	
Display update rate	4 Hz	
Overall size	220w x 290d x 100h (Aluminium enclosure)	
Weight	1.76 Кд	
Operating temperature range	-10°C - 50°C	
Power supply	90-250v AC, 50-60Hz, 10W, IEC connector	
Channel 1 analog output	As specified by transducer	
Channel 2 analog output	As specified by transducer	
Pulse RPM out	TTL compatible	
Serial output	USB Туре В	
Connection to transducer	Cable ACC-04	

Bluetooth Interface Module

Introduction

The optional Bluetooth interface box bring wireless flexibility to your transducers. The box simply plugs into the 15 way 'D' digital lead connector, it also allows the transducer to be powered through the interface as well as providing a USB output.

Our android app will enable you to view the current Torque, Speed, and temperature, as well as peak values. It will also allow you to set filters and view the current configuration of the sensor. As the Interface also has a USB output it lets you connect to your PC at the same time, this allows you to run a full version of our TorqView software, for example to record at full speed while using your android device as a monitor.

Using a mobile device with Bluetooth and our software means you can quickly look at the transducer data without having to set up a computer and cables giving you fast access to the information when you need it.

Benefits

- Connect via USB and Bluetooth at the same time to use TorqView full, as well as the app as a monitor at the same time.
- Wireless so computer / tablet can be away from the transducer
- Android app for mobile devices is available.
- Provides power to the transducer.
- One module solution.
- Wall / bench mountable.

Mechanical Data

Data parameters measured at 20°C

- Transducer digital lead plugs straight into the module
- 11-32V DC input, powers module and transducer
- USB output
- Data rate
- Android App

System Rental

"A Unique Service from Sensor Technology"

General

Sensor Technology Ltd offers a unique System Rental Service for all their standard Transducers, Display Interface Readout Systems and Software.

Suitable for:

- Short term Research or Development programmes.
- Cash flow or budgetary reasons.

The equipment or system is offered on short or long term rent, with an option to purchase which may be exercised at any time during the rental term.

An outline of our rental terms is below but please see over for our full Rental Terms and Conditions:

Rental Period

Minimum rental is one month. The hire starts from the time the equipment is delivered to the customer or at an agreed site, and continues until the equipment is returned to our premises. NOTWITHSTANDING THAT A DIFFERENT RENTAL TERM IS SETFORTH ON THE CUSTOMERS PURCHASE ORDER.

Option to Purchase

Allowance if converted to purchase: 75% of rentals paid for first 6 months. 50% of rentals paid thereafter.

Insurance

Equipment is to be insured for retail value by hirer until it is returned to Sensor Technology. Any damage to equipment will be charged to the hirer.

Rental Charges

1 st Month	- 14% of purchase price.
2 nd Month	- 11% of purchase price.
3 rd Month	- 8% of purchase price.
4 th Month and	
subsequent months	- 7% of purchase price.

Part months will be charged on a daily pro-rata basis. One month = 30 days.

Invoiced on dispatch-1st months payment on delivery.

Subsequent months - Net 30 days from invoice for approved accounts.

Carriage and Packing will be charged at cost.

Please see over for full Rental Terms and Conditions. We will be pleased to quote price and delivery for your exact requirements.

Rental Terms & Conditions

BY ACCEPTANCE AND USE OF THIS EQUIPMENT, THE CUSTOMER IS BOUND BY THE TERMS AND CONDITIONS OF THIS AGREEMENT: THE CUSTOMER'S SIGNATURE IS NOT REQUIRED. No modification of the terms of this Agreement shall be allowed unless agreed in writing and signed by us.

1. Period of Hire

The period of hire shall be for a minimum of one month and thereafter extendible monthly or part thereof. The hire starts from the time the equipment is delivered to the customer or an agreed site, and continues until the equipment is returned to Sensor Technology Ltd's premises **NOTWITHSTANDING THAT A DIFFERENT RENTAL TERM IS SETFORTH ON THE CUSTOMERS PURCHASE ORDER.**

2. Hire Charge

All prices quoted are net ex-works and exclusive of VAT, which will be charged at the prevailing rate at tax, point date. Sensor Technology Ltd reserves the right to alter the rental charge for equipment already on hire and will give reasonable notice to that effect. An option to purchase is available.

3. Delivery

Shipments will be made by an approved carrier and at the customers' expense. Sensor Technology Ltd will use all reasonable endeavours to meet quoted delivery dates but will not be liable for delay in delivery arising from whatever cause.

4. Acceptance of Equipment

Unless Sensor Technology Ltd is notified within 48 hours of receipt of equipment by the customer, the equipment will be held to have been delivered in good operating condition and to be in complete accordance with the customers order.

5. Repair & Replacement of Equipment

Sensor Technology Ltd shall at its expense endeavour to repair any item of equipment that becomes defective during the rental period through no fault of the customer or his staff. In the event that any item does not operate properly the customer shall notify Sensor Technology Ltd and request instructions before taking remedial action or returning same to Sensor Technology Ltd. In the event that equipment cannot be repaired, Sensor Technology Ltd will endeavour to provide a suitable replacement. In the event that any item of equipment requires repair or calibration as a result of negligence, misuse or abuse of such item by the customer or his employees, the customer will bear the entire cost of any such repair or calibration, including transportation costs. Sensor Technology Ltd does not warrant the merchantability of the equipment or its fitness for any particular purpose or use.

6. Customers Obligations

The customer shall during the continuance of the hire period:

- A Keep the said equipment at the delivery address and in the customers own possession and not remove the same from such address without first notifying Sensor Technology Ltd in writing of its destination and in any event, not allowing said equipment to be transferred to any country prohibited by the Department of Trade and Industry or the US Department of Commerce.
- B Repay Sensor Technology Ltd on demand all costs, charges and expenses incurred in any way by reason of any breach of these terms and conditions by the customer including but not by way of limitation, all costs, charges and expenses incurred in ascertaining the equipments whereabouts.
- C Keep the equipment in good condition and not subject to any misuse normal wear and tear accepted while the said equipment is in the customers possession.
- D Permit Sensor Technology Ltd or their authorised representative at all reasonable times to enter upon premises or vessel where the said equipment may be inspected, repaired or tested.
- E Preserve Sensor Technology Ltd's identification marks or any nameplate that should be upon the said equipment.
- F Notify Sensor Technology Ltd in writing immediately, of any loss or damage to the said equipment and, on demand, reimburse Sensor Technology in respect thereof within 30 days of the occurrence the full cost of repair or replacement. Where the equipment is damaged the hire charges will continue until the equipment is delivered to our Laboratory.
- G Arrange at the customers expense, adequate insurance coverage for the loss or damage of the equipment from the moment it is received with the customer (or delivered to a designated site) until the said equipment is received at our Laboratory. Alternatively the customer may request and Sensor Technology Ltd may agree to arrange insurance cover for the equipment and Sensor Technology will charge and the customer will pay for such insurance.
- H Take all reasonable and practical steps to ensure that the equipment use conforms with all Government statutes (particularly the Health and Safety at Work Act 1974 section 2(2)(b) and 2(2)(c)). Further to be responsible for and indemnify Sensor Technology Ltd against any loss, damage, injury, death to person or property for whatever reason.
- 1 Not sell, assign, sub-rent or transfer the benefit of the contract in part or in whole or to part with possession of the said equipment or any part of it at any time during the rental.
- J Not make any alterations, modifications, or technical adjustments or do or attempt to do any repairs to the said equipment without the written consent of Sensor Technology Ltd.
- K Any items or non-expendable material not returned to Sensor Technology Ltd will be charged to the customer at the full replacement cost or £25-00 which ever is the greater.

7. Payment Terms

Payments shall be due within 30 days of date of invoice. In addition, if any such rental fee or other amount remains unpaid more than 30 days after the date it is due, Sensor Technology Ltd shall have the right to charge interest at the rate of 2% per month on sums unpaid calculated from the date due until payment. In the event that payment is not received 30 days after the due date, Sensor Technology Ltd has the right to terminate the agreement and recover the equipment at the customers expense without prior notice.

8. Cancellation

If the customer cancels part or all of the agreement prior to commencement of the rental, such cancellation can only be accepted with Sensor Technology Ltd's consent and on terms that indemnify against loss.

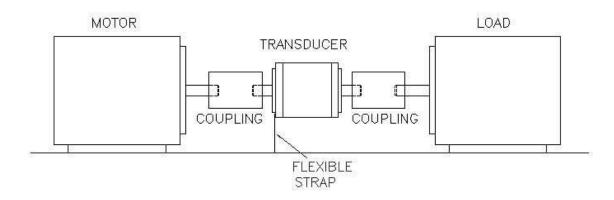
9. Rental Rates and Discounts

Rental rates and discounts may be subject to change without prior notice. At present they are: 1st Month - 14% of purchase price; 2nd Month - 11% of purchase price;3rd Month - 8% of purchase price; 4th Month and subsequent months - 7% of purchase price. Part months will be charged on a daily pro-rata basis. One month = 30 days. Carriage and Packing will be charged at cost. Should the customer wish to subsequently purchase the equipment, 75% of rental paid for the first 6 months will be allowed and 50% of the rental paid for subsequent months will be allowed.

10. Termination of Hire

The hire is terminated when the equipment is returned to Sensor Technology Ltd's premises or when the customer has arranged for collection with Sensor Technology Ltd.

11. Return of Equipment


It is the customer's responsibility to return the equipment at the expiry termination by his own transport or an approved carrier OR to make the equipment available for collection by Sensor Technology Ltd's nominated transport. In either case the customer retains the responsibility to ensure the safety and securit of the equipment until the equipment is received at Sensor Technology Ltd's premises. Sensor Technology Ltd packing materials are chargeable in full if not returned upon termination of the hire.

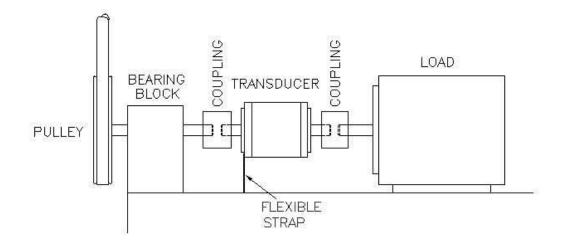
Rotary Torque Transducer Installation Guide

To get the best from your RWT Series or E200 Series Rotary Torque Transducer it is essential that it is correctly installed.

To avoid damaging the transducer during installation it is highly recommended that it is electrically connected and working during this process so that any torque overloads due to handling can be monitored. For rotary torque transducers **with torque ranges more than 1Nm (10lbf.in.)** it is recommended that the body of the transducer is not rigidly mounted but restrained from rotation using a strap or straps connected to the tapped holes in the end plates. Couplings should be used to allow for angular misalignment while the transducer shaft takes up any parallel misalignment. Care should be taken not to induce any end loads or bending moments to the shaft, as these may induce inaccuracies to the torque measurement and in extreme cases damage the transducer.

Should rapid variations in torque need to be measured in detail e.g. torque fluctuations in gearboxes or multi vane pumps then it is recommended using torsionally rigid couplings fitted at both ends of the transducer shaft such as single membrane couplings and that these are correctly selected for the transducer rating and speed. An undersized coupling will not transmit the torque while the high inertia of an oversized coupling can result in instantaneous peak torques far in excess of the measured torque. Alternatively, for lower bandwidth applications, where it is more important to measure the 'average' torque rather than fast torque fluctuations, then couplings with a degree of compliance would be more appropriate.

Single membrane coupling (Flexible mounting)


nting) (Rigid mounting) Never use a solid coupling to connect a RWT Series or E200 Series Rotary Torque Transducer.

membrane coupling

Double

For rotary torque transducers with **torque ranges less than 1Nm (10lbf.in.)**, or rigidly mounted torque transducers, it is recommended that double couplings should be used at each end to compensate for any misalignment of the input/output shafts. The system should be designed to eliminate any end loads on the transducer shaft. For applications where end loads cannot be avoided please consult our Sales Department for advice prior to ordering.

When using a pulley or pulleys it is recommended a bearing block or blocks should be used to ensure bending loads are not transmitted to the transducer.

Whilst the transducer is resistant to EMC interference (BS EN 61326:2006), the sensible routing of cables is important to avoid possible EMC interference. Avoid running the transducer cables close, and/or parallel, to high voltage cables, solenoid valves, generators or inverters etc. If the cables must follow the same route as interfering cables then additional screening such as metal conduit should be used to provide isolation. If using an E200 Series or E300 Series rotary transducer with an E Series Display Interface do not attempt to lengthen, shorten or modify the cable between the transducer and the Display Interface. Contact our Sales Department if a longer cable is required.

To avoid damaging the transducer during installation it is highly recommended that it is electrically connected and working during this process so that any torque overloads due to handling can be monitored.

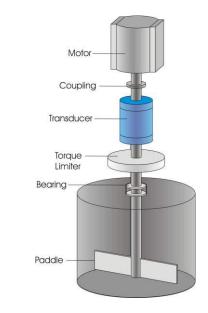
If in doubt, please ask for advice on the installation of your Rotary Torque Transducer via our Sales Department.

Tel: +44(0)1869 238400 Email: info@sensors.co.uk

Application Notes - Viscosity Measurement

Most laboratory viscometers employ the well-known principle of rotational viscometers to measure viscosity by sensing the torque required to rotate a spindle at a constant speed while it is immersed in the sample fluid. This is because the torque, generally measured using the reaction torque on the motor, is proportional to the viscous drag on the immersed spindle and thus the viscosity of the fluid.

AEA Technology wished to measure the consistency of cement mixes for pressure injection into containers full of radioactive waste because it is vital that the mixture is injected at the correct consistency to ensure it fills all the air spaces but yet still sets correctly.


AEA found that this could only be achieved by using Sensor Technology's Rotary Torque equipment and accurately measuring the drive torque required to turn the mixer paddle during mixing. Many other applications mixing fluids with solids in suspension have been similarly measured since this work, such as plaster mixes, coal slurry, and magnetic particles in fluid as it is very difficult to measure the viscosity of these by normal methods and in most cases online monitoring is required.

There are many other applications where it is necessary to monitor the viscosity of the fluid during mixing, for example during the manufacture of shampoos and pharmaceutical solutions. Again, it is important in such applications that the relative viscosity is known during mixing, in order to ascertain when the process is completed and the viscosity or consistency is at optimum.

Operation

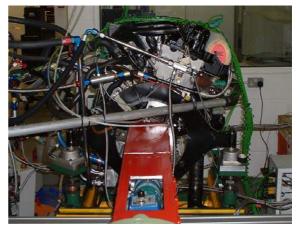
Provided that the motor speed is constant, the torque will vary with changes in viscosity during mixing, and thus enable the operator to measure the relative viscosity of the mix. The relationship between the torque and the absolute viscosity is controlled by the paddle type and size, which will be designed for optimum mixing. Classic viscosity measuring systems use a cylinder rather than a paddle but of course a cylinder is not effective for mixing, and thus absolute viscosity cannot usually be measured during the mixing process.

Installation

The Rotary Torque Transducer is mounted between the motor and the paddle. As the rotary transducers can be sensitive to side loads, it is essential that the paddle is not directly connected to the transducer but that double bearings are used to eliminate any side loads. See Transducer Installation Guide.

Many mixers are driven by motors which are many times more powerful than they need to be, and so a stoppage of the paddle mechanism can lead to the inline torque transducer being severely overstrained or broken. Consideration should be given to protecting the transducer with a torque-limiting couplings.

The relative reading can be related to the absolute viscosity by measuring a known relative sample in a laboratory viscometer to obtain its absolute reading and thus find the optimum relative torque figure, which represents the required viscosity.



Recent Applications

TorqSense transducers from Sensor Technology are playing a key role in the development of commercial-scale in-stream tidal turbines produced by Irish company, OpenHydro. They are being used to test the bearings, and this involves the use of a simulator that allows the company's engineers to determine how frictional forces in the bearings vary with different loads and rotational speeds. Central to the operation of this simulator is the measurement of torque in a shaft from the motor that drives the bearing under test. OpenHydro uses the RWT321 sensor in conjunction with Sensor Technology's TorqView software. This offers a choice of dial, digital bar and chart graph format display for torque, RPM, temperature and power. It also provides facilities for realtime plotting and for data recording, and can output stored results as files that are compatible with Matlab and Excel.

A TorqSense torque sensor is helping Powertrain Technologies reduce engine emissions and improve economy as part of a project to develop an intelligent lubrication system. The engine being tested was a current production Diesel and the test bed was configured for motored friction tests with a 6,000rpm 32kW electric motor driving the engine. The engine lubrication system was re-designed with a bank of five computer controlled oil pumps, each capable of supplying individual parts of the engine and sensitive to the engine operating conditions. The torque sensor is critical to the project since the object of the exercise is to measure the effect on friction of a range of different oil supply strategies and oil types. Thus the changes in friction are represented by a change in the motored drive torque of the engine.

In the world of pharmaceuticals product integrity is paramount and packaging has a key role to play. CapCoder of Oxford use TorqSense transducers at the core of its specialist bottle sealing machines. These capping machines not only tighten bottle caps within precisely defined tolerance but also log every detail of every bottle that is capped. A batch size is typically 10,000 bottles, which are capped at a rate of one per second. Every cap has to be done up to the same torque, and proof of this performance is required. The machine had to run the torque up to 10kgf.cm within tolerances of 10% recording the actual value achieved. This secures the cap at a level of tightness that will ensure security and sterility, yet can be opened relatively easily by an adult. The logged values are saved using TorqView software to provide a permanent record for traceability.

Recent Applications

The new wireless LoadSense load cell provides all the information needed to optimise efficiency and increase profitability of a wide range of industrial operations. The new development allows weighing processes to be fully integrated with handling operations. All live data is captured in real time and can be transferred to a database, stored, totalised and analysed. The load sensor can be integrated with a crane hook, fork lift or other handling device. It has an on-board single-chip computer for recording, analysing and archiving readings, and wireless communications (operating on a harmonized global 2.4 GHz waveband) that can transfer data in real time to a host computer. Internal batteries make LoadSense's operation completely autonomous. As such it can be deployed with minimal disruption to operations, and will automatically begin transmitting data. No special training is required to install or operate the unit. Multi channel operation is standard.

Highway engineers and horticulturalists are using LoadSense wireless load cells to solve a critical safety problem, tree viability. Trees can transform a roadside verge, townscape or recreation space with their beauty and their ability to capture carbon dioxide. But they also present a potential hazard: if they fall, they could block a vital highway or even kill someone. As a result, professionals responsible for trees like to test the strength of their roots, usually by fixing a sling around the trunk and giving it a good tug with a tractor! A LoadSense transducer is put in line with the sling, and a wireless transmitter sends the live data to a nearby ruggedised PC or custom built handheld readout. The procedure is to pull the tree until the first suggestions of movement, with the load force being automatically displayed as a pass/fail signal.

LoadSense is helping theatres create breath-taking spectacles and leave the audience gasping for more, and ensure safety when excited performers and heavy machinery share the same space. This is achieved using realtime load signals from each winch. The data is monitored by a computer in the control room so that instant action can be taken if any loads move out of tolerance. For instance, if a load starts running too fast it can be slowed down immediately. If a prop is heavier than expected this could suggest someone was standing on it so shouldn't be whizzed 50 feet into the air at high speed. In fact, in this case, the computer 'jiggles' the load for a second or two as a warning to encourage the person to step away: If the load then returns to normal it can rise; if it doesn't, the floor manager is alerted by an alarm to check the situation.

Apollo Park, Ironstone Lane, Wroxton, Banbury, Oxon, OX15 6AY, UK Tel: +44 (0)1869 238400 Fax: +44 (0)1869 238401 Email: info@sensors.co.uk Web: www.sensors.co.uk