
(W)GS2 Velocity Sensor with Analog or A/D converted synchronous serial output

(W)GS

Order Code (W)GS2

Model Name

Measurement Range (in mm)

1500 / 2000 / 2500

Position outputs

R1K = Potentiometer 1 k Ω (other Values on Request e.g. 500 Ω)

= with 0 ... 10 V Signal Conditioner

420A = with 4 ... 20 mA Signal Conditioner (2 wire)

420T = with 4 ... 20 mA Signal Conditioner (3 wire) PMU = with 0...10 V/4...20 mA Signal Conditioner, adjustable

ADSI = with A/D converted synchronous serial output 12 Bit / RS-485

Velocity outputs

= 10 V/m/s; 0.423 V/100in/min approx. (unscaled DC Tachometer Output)

= 5 V/m/s; 0.212 V/100in/min (scaled DC Tachometer Output)

Scaled Signal Conditioner:

Linearity (Position)

 $L10 = \pm 0.10 \% (L05 \text{ on request})$

 $= \pm 0.25 \%$ L25

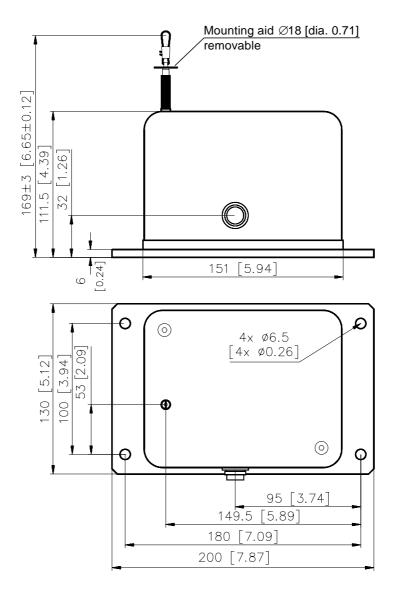
DIN Connector

= Connector 8 pin DIN 45326 D8

Order Code Mating Connector (see accessories page 105)

WS-CONN-D8

Order Example: WGS2 - 2500 - 10V - V10 - L10 - D8


(W)GS2 Velocity Sensor with Analog or A/D converted synchronous serial output

	Weight	2.1 kg approx.
Specifications	Environmental	
(Continuation)	Immunity to Interference (EMC)	Refer to Output Specification
	Temperature	Refer to Output Specification

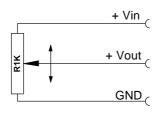
Cable Forces	Range [mm] [in]	Maximum Pull-out Force [N]	Minimum Pull-in Force [N]
typical at 20 °C	1500 59.06	10.2	6.7
,	2000 78.74	8.4	5.4
	2500 98.43	7.2	4.8

Outline drawing

Dimensions in brackets are inches.
For guaranteed dimensions consult factory

ASM CAT-POS-E-2001 51

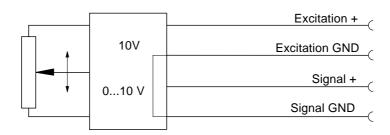
WS Position Sensors Output Specifications R1K and 10V



Voltage divider R1K Potentiometer

Excitation Voltage	32 VDC max. at 1 k Ω (Input Power 1 W max.)
Potentiometer Impedance	1 kΩ ±10%
Thermal coefficient	±0.0025% / K Full Scale
Sensitivity	Depends on measurement range, individual sensitivity of sensor specified on label
Voltage Divider Utilization Range	Approx. 3% 97% of Full Range
Operating Temperature	-20 +85 °C

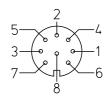
Signal diagram


Note: The potentiometer must be connected as a voltage divider. The input impedance of the following processing circuit should be 10 $\mbox{M}\Omega$ min.

Signal conditioner 10V Voltage output

Excitation Voltage	+18 +27 V DC non stabilized
Excitation Current	20 mA max.
Output Voltage	0 +10 V DC
Output Current	2 mA max.
Output Load	> 5 kΩ
Stability (Temperature)	±0.005% / K Full Scale
Protection	Reverse Polarity, Permanent Short Circuit
Output Noise	0,5 mVRMS
Operating Temperature	-20 +85 °C
Immunity to interference (EMC)	According to EN 61326: 1998

Signal diagram



Signal Wiring	Output Signals R1K	10V	Connector WS-CONN-D8
	+ Vin	Excitation +	1
	GND	Excitation GND	2
	+ Vout	Signal +	3
		Signal GND	4
			5
			6
			7
			8

Connection

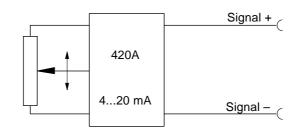
Mating Connector

View to solder terminals

WS-CONN-D8

ASM CAT-POS-E-2001 79

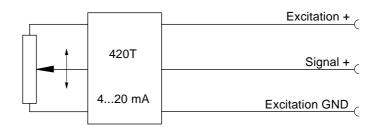
WS Position Sensors Output Specifications 420A and 420T


Signal conditioner 420A

Current output (2 wire)

Excitation Voltage	+12 27 VDC non stabilized, measured at the sensor terminals
Excitation Current	35 mA max.
Output Current	4 20 mA equivalent to 0 100% Range
Stability(Temperature)	±0.01% / K Full Scale
Protection	Reverse Polarity, Permanent Short Circuit
Output Noise	0.5 mVRMS
Operating Temperature	-20 +85 °C
Immunity to Interference (EMC)	According to EN 61326: 1998

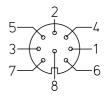
Signal Diagram


Signal Conditioner 420T

Current output (3 wire)

Excitation Voltage	+18+27 V DC non stabilized
Excitation Current	40 mA max.
Load Resistor	$350~\Omega$ max.
Output Current	4 20 mA equivalent to 0 100% Range
Stability (Temperature)	±0.005% / K Full Scale
Protection	Reverse Polarity, Permanent Short Circuit
Output Noise	0.5 mV _{RMS}
Operating Temperature	-20 +85 °C
Immunity to Interference	According to EN 61326: 1998

Signal diagram

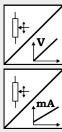


Signal Wiring	Output Signals 420A	420T	Connector WS-CONN-D8
	Signal +	Excitation +	1
	Signal –	Excitation GND	2
		Signal +	3
			4
			5
			6
			7
			8

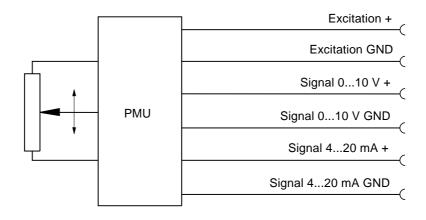
Connection

Mating Connector

View to solder terminals


WS-CONN-D8

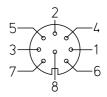
WS Position Sensors Output Specification PMU


Signal Conditioner PMU, adjustable Voltage output and

current output (3 wire)

+18 27 V DC
50 mA max.
0 10 V
10 mA max.
1 k Ω min.
4 20 mA (3 wire)
500 $Ω$ max.
Connect with excitation GND (0 V)
90 % max. full scale
±50 ppm/°C full scale
Reverse polarity, short circuit
1 mV _{eff}
-20 +85 °C
EN 61000-4-2, -4, -5, -6
1 % max. at testing strength 4
CISPR 11

Signal diagram



0'	Output signals PMU	Connector WS-CONN-D8
Signal wiring	Excitation +	1
	Excitation GND	2
	Signal 010 V +	3
	Signal 010 V GND	4
	Signal 420 mA +	5
	Signal 420 mA GND	6
	Offset	7
	Gain	8

Connection

Mating Connector

View to solder terminals

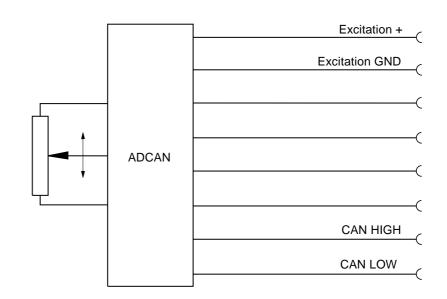
WS-CONN-D8

81

ASM CAT-POS-E-2001

WS Position Sensors Output Specification ADCAN

Description


Signal conditioner with CANopen interface for WS Position Sensors and AWS Angle Sensors. The sensing device of the ADCAN is a precision potentiometer. Start, stop, synchronization of the position data transmission and parameter programming will be supported according to the CANopen standard DS301. Two process data objects (PDO) will be transmitted to transfer the position value and cam events.

Signal Conditioner ADCAN (CANopen)

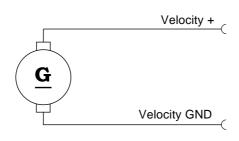
CANopen interface	
Excitation Voltage	+24 V
Specifications	Communication Profile DS301 Encoder Profile DS406
One Service Data Object (SDO)	Parameter setting
Two Process Data Objects (PDO)	Position value, cam
Transmission Rate	125 kBd, variable by SDO
Node ID	Default 01, variable by SDO
Resolution	16 Bit
Transmission mode	Synchronous, asynchronous cyclic or dependant on event

Output signals

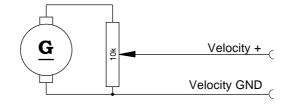
	Signals ADCAN	Connector WS-CONN-D8
Signal wiring	Excitation +24 V	1
	Excitation GND	2
	CAN LOW	7
	CAN HIGH	8

Connection

Mating connector

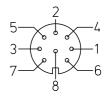

View to solder terminals 7 8 WS-CONN-D8

WS Position Sensors Output Specifications TA and T5


Tacho TA	Output Voltage	100 VDC maximum permissible (self-generating)
Unscaled	Output Load	> 100 kΩ
DC Tachometer	Stability (Temperature)	±0.02% / K Full Scale
	Output Impedance	500 $Ω$ approx.
	Sensitivity	10 V/m/s approx., depends on the tachometer design: Individual measured sensitivity specified on label.
	Linearity	±1%
	Operation Temperature	-20 +85 °C
	Immunity to Interference (EMC)	According to EN 61326: 1998

Signal Diagram

Tacho T5 Scaled DC Tachometer	Output voltage	50 VDC maximum permissible (self-generating	
	Output Load	> 100 kΩ	
	Stability (Temperature)	±0.02% / K Full Scale	
G +v -v	Output Impedance	500 Ω approx.	
	Sensitivity	5 V/m/s	
	Linearity	±1%	
	Operation Temperature	-20 +85 °C	
	Immunity to Interference (EMC)	According to EN 61326: 1998	

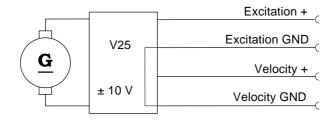

Signal Diagram

Signal Wiring	Output Signals TA	T5	Connector WS-CONN-D8
			1
			2
			3
			4
	Velocity +	Velocity +	5
	Velocity GND	Velocity GND	6
			7
			8

ConnectionMating Connector

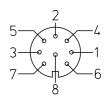
View to solder terminals

WS-CONN-D8


ASM CAT-POS-E-2001 83

WS Position Sensor Output Specification VXXX

Signal Conditioner VXXX Scaled DC Tachometer	Excitation Voltage	+14 +27 VDC non stabilized
	Excitation Current	20 mA max.
	Output Voltage	-10 +10 VDC
	Output Current	1 mA max.
	Output Load	> 10 kΩ
	Stability (Temperature)	±0.01% / K Full Scale
	Protection	Reverse Polarity, Permanent Short Circuit
	Output Noise	0.5 mV _{RMS}
	Velocity Ranges	2 / 10 / 25 / 50 / 100 / 250 mm/s
	Linearity	±0.25% Full Scale, <100 mm/s: 1 % Full Scale
	Operating Temperature	-20 +85 °C
	Immunity to interference (EMC)	According to EN 61326: 1998


Signal Diagram

Signal Wiring	Output Signals VXXX	Connector WS-CONN-D8
	Excitation +	1
	Excitation GND	2
		3
		4
	Velocity +	5
	Velocity GND	6
		7
		8

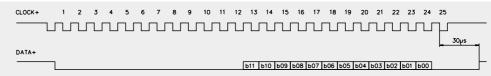
ConnectionMating Connector

View to solder terminals

WS-CONN-D8

WS Position Sensors Output Specification ADSI

- Resolution 12 Bit, Data Transmission synchronous serial
- No Loss of Data at Power-down
- Easy to Connect to PLC's with SSI Input Circuit

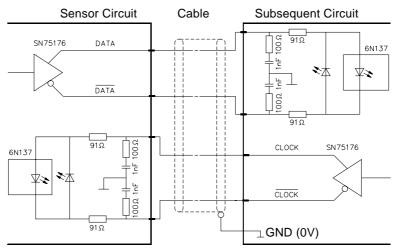

Description

The sensing device of the ADSI is a precision potentiometer. The position information is given by an analog/digital converter output serialized as a data word. Data transmission takes place by means of the signals CLOCK and DATA. The processing unit (PLC, Microcomputer) sends pulse sequences which clock the data transmission with the required transfer rate. With the first falling edge of a pulse sequence the position of the sensor is recorded and stored. The following rising edges control the bit-by-bit A/D conversion, encoding and output of the data word.

After a delay time the next new position information will be transmitted.

Data Format

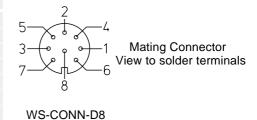
(Train of 26 Pulses)


Signal Conditioner ADSI

A/D converted synchronous serial

Output	EIA RS-422, RS-485, short-circuit proof
Excitation Voltage	11 27 VDC
Excitation Current	200 mA max.
Clock Frequency	70 500 kHz
Code	Gray Code, Continuous Progression
Delay between Pulse Trains	T=30 µs min.
Resolution	12 Bit (4096 Counts) Full Scale
Stability (Temperature)	±0.005% / K Full Scale
Operation Temperature	-20 +85 °C
Immunity to Interference (EMC)	According to EN 61326: 1998

Recommended Processing Input Circuit


Cable Length	Baud Rate	
50 m	300 kHz	
200 m	100 kHz	

	Signal name	Connector Pin
Signal Wiring /	Excitation +	1
Connection	Excitation GND (0V)	2

Excitation +	1
Excitation GND (0V)	2
CLOCK	3
CLOCK	4
DATA	5
DATA	6
Screen	not connected

Note:

Extension of the cable length will reduce the maximum transmission rate. The signals CLOCK/CLOCK and DATA/DATA must be connected in a twisted pair cable, shielded per pair and common.

